Stratified Whitney jets and tempered ultradistributions on the subanalytic site
Bulletin de la Société Mathématique de France (2011)
- Volume: 139, Issue: 3, page 389-435
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topHonda, N., and Morando, G.. "Stratified Whitney jets and tempered ultradistributions on the subanalytic site." Bulletin de la Société Mathématique de France 139.3 (2011): 389-435. <http://eudml.org/doc/272690>.
@article{Honda2011,
abstract = {In this paper we introduce the sheaf of stratified Whitney jets of Gevrey order on the subanalytic site relative to a real analytic manifold $X$. Then, we define stratified ultradistributions of Beurling and Roumieu type on $X$. In the end, by means of stratified ultradistributions, we define tempered-stratified ultradistributions and we prove two results. First, if $X$ is a real surface, the tempered-stratified ultradistributions define a sheaf on the subanalytic site relative to $X$. Second, the tempered-stratified ultradistributions on the complementary of a $1$-regular closed subset of $X$ coincide with the sections of the presheaf of tempered ultradistributions.},
author = {Honda, N., Morando, G.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {sheaves on subanalytic sites; tempered ultradistributions; Whitney jets},
language = {eng},
number = {3},
pages = {389-435},
publisher = {Société mathématique de France},
title = {Stratified Whitney jets and tempered ultradistributions on the subanalytic site},
url = {http://eudml.org/doc/272690},
volume = {139},
year = {2011},
}
TY - JOUR
AU - Honda, N.
AU - Morando, G.
TI - Stratified Whitney jets and tempered ultradistributions on the subanalytic site
JO - Bulletin de la Société Mathématique de France
PY - 2011
PB - Société mathématique de France
VL - 139
IS - 3
SP - 389
EP - 435
AB - In this paper we introduce the sheaf of stratified Whitney jets of Gevrey order on the subanalytic site relative to a real analytic manifold $X$. Then, we define stratified ultradistributions of Beurling and Roumieu type on $X$. In the end, by means of stratified ultradistributions, we define tempered-stratified ultradistributions and we prove two results. First, if $X$ is a real surface, the tempered-stratified ultradistributions define a sheaf on the subanalytic site relative to $X$. Second, the tempered-stratified ultradistributions on the complementary of a $1$-regular closed subset of $X$ coincide with the sections of the presheaf of tempered ultradistributions.
LA - eng
KW - sheaves on subanalytic sites; tempered ultradistributions; Whitney jets
UR - http://eudml.org/doc/272690
ER -
References
top- [1] E. Bierstone & P. D. Milman – « Semianalytic and subanalytic sets », Publ. Math. I.H.É.S. 67 (1988), p. 5–42. Zbl0674.32002MR972342
- [2] N. Honda – « On the reconstruction theorem of holonomic modules in the Gevrey classes », Publ. Res. Inst. Math. Sci.27 (1991), p. 923–943. Zbl0807.35005MR1145670
- [3] J.-M. Kantor – « Classes non-quasi analytiques et décomposition des supports des ultradistributions », An. Acad. Brasil. Ci.44 (1972), p. 171–180. Zbl0261.46043MR324398
- [4] M. Kashiwara – « The Riemann-Hilbert problem for holonomic systems », Publ. Res. Inst. Math. Sci.20 (1984), p. 319–365. Zbl0566.32023MR743382
- [5] M. Kashiwara & P. Schapira – Sheaves on manifolds, Grund. Math. Wiss., vol. 292, Springer, 1990. Zbl0709.18001MR1074006
- [6] —, « Moderate and formal cohomology associated with constructible sheaves », Mém. Soc. Math. France (N.S.) 64 (1996), p. 76. Zbl0881.58060MR1421293
- [7] —, « Ind-sheaves », Astérisque 271 (2001), p. 136. Zbl0993.32009MR1827714
- [8] H. Komatsu – « Ultradistributions. I. Structure theorems and a characterization », J. Fac. Sci. Univ. Tokyo Sect. IA Math.20 (1973), p. 25–105. Zbl0258.46039MR320743
- [9] —, « Ultradistributions. II. The kernel theorem and ultradistributions with support in a submanifold », J. Fac. Sci. Univ. Tokyo Sect. IA Math.24 (1977), p. 607–628. Zbl0385.46027MR477770
- [10] K. Kurdyka – « On a subanalytic stratification satisfying a Whitney property with exponent », in Real algebraic geometry (Rennes, 1991), Lecture Notes in Math., vol. 1524, Springer, 1992, p. 316–322. Zbl0779.32006MR1226263
- [11] A. Lambert – « Quelques théorèmes de décomposition des ultradistributions », Ann. Inst. Fourier (Grenoble) 29 (1979), p. 57–100. Zbl0396.46038MR552960
- [12] S. Łojasiewicz – « Sur le problème de la division », Studia Math.18 (1959), p. 87–136. Zbl0115.10203
- [13] B. Malgrange – Équations différentielles à coefficients polynomiaux, Progress in Math., vol. 96, Birkhäuser, 1991. Zbl0764.32001
- [14] G. Morando – « Tempered holomorphic solutions of -modules on curves and formal invariants », Ann. Inst. Fourier (Grenoble) 59 (2009), p. 1611–1639. Zbl1218.32015MR2566969
- [15] L. Prelli – « Microlocalization of subanalytic sheaves », C. R. Math. Acad. Sci. Paris345 (2007), p. 127–132. Zbl1159.14034MR2344810
- [16] C. Roumieu – « Ultra-distributions définies sur et sur certaines classes de variétés différentiables », J. Analyse Math. 10 (1962/1963), p. 153–192. Zbl0122.34802MR158261
- [17] P. Schapira – « Sur les ultra-distributions », Ann. Sci. École Norm. Sup.1 (1968), p. 395–415. Zbl0164.15401MR239414
- [18] H. Whitney – « Functions differentiable on the boundaries of regions », Ann. Math.35 (1934), p. 482–485. Zbl60.0217.03MR1503174JFM60.0217.03
- [19] S. Yamazaki – « Remark on division theorem of ultradistributions by Fuchsian differential operator », in Algebraic analysis and the exact WKB analysis for systems of differential equations, RIMS Kôkyûroku Bessatsu, B5, Res. Inst. Math. Sci. (RIMS), Kyoto, 2008, p. 209–223. Zbl1140.35315MR2405975
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.