Moduli of objects in dg-categories
Annales scientifiques de l'École Normale Supérieure (2007)
- Volume: 40, Issue: 3, page 387-444
- ISSN: 0012-9593
Access Full Article
topHow to cite
topToën, Bertrand, and Vaquié, Michel. "Moduli of objects in dg-categories." Annales scientifiques de l'École Normale Supérieure 40.3 (2007): 387-444. <http://eudml.org/doc/82716>.
@article{Toën2007,
author = {Toën, Bertrand, Vaquié, Michel},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {moduli of objects; stacks; dg-categories; triangulated categories; classification of objects},
language = {eng},
number = {3},
pages = {387-444},
publisher = {Elsevier},
title = {Moduli of objects in dg-categories},
url = {http://eudml.org/doc/82716},
volume = {40},
year = {2007},
}
TY - JOUR
AU - Toën, Bertrand
AU - Vaquié, Michel
TI - Moduli of objects in dg-categories
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2007
PB - Elsevier
VL - 40
IS - 3
SP - 387
EP - 444
LA - eng
KW - moduli of objects; stacks; dg-categories; triangulated categories; classification of objects
UR - http://eudml.org/doc/82716
ER -
References
top- [1] Anel M., Toën B., Dénombrabilité des classes d'équivalences dérivées des variétés algébriques, J. Algebraic Geom., submitted for publication. Zbl1184.14027
- [2] Bondal A., Kapranov M., Enhanced triangulated categories, Math. USSR Sbornik70 (1991) 93-107. Zbl0729.18008MR1055981
- [3] Bondal A., Van Den Bergh M., Generators and representability of functors in commutative and non-commutative geometry, Mosc. Math. J.3 (1) (2003) 1-36. Zbl1135.18302MR1996800
- [4] Ciocan-Fontanine I., Kapranov M., Derived Hilbert schemes, J. Amer. Math. Soc.15 (4) (2002) 787-815. Zbl1074.14003MR1915819
- [5] Gorski J., Representability of derived Quot functor, in preparation.
- [6] Hinich V., DG coalgebras as formal stacks, J. Pure Appl. Algebra162 (2–3) (2001) 209-250. Zbl1020.18007
- [7] Hirschhorn P., Model Categories and Their Localizations, Math. Surveys and Monographs, vol. 99, Amer. Math. Soc., Providence, 2003. Zbl1017.55001MR1944041
- [8] Hirschowitz A., Simpson C., Descente pour les n-champs, math.AG/9807049.
- [9] Hovey M., Model Categories, Mathematical Surveys and Monographs, vol. 63, Amer. Math. Soc., Providence, 1998. Zbl0909.55001MR1650134
- [10] Hovey M., Model category structures on chain complexes of sheaves, Trans. Amer. Math. Soc.353 (6) (2001) 2441-2457. Zbl0969.18010MR1814077
- [11] Inaba M., Toward a definition of moduli of complexes of coherent sheaves on a projective scheme, J. Math. Kyoto Univ.42 (2) (2002) 317-329. Zbl1063.14013MR1966840
- [12] Joyce D., Configurations in abelian categories. II. Ringel–Hall algebras, Adv. Math.210 (2) (2007) 635-706. Zbl1119.14005
- [13] Kapranov M., Injective resolutions of BG and derived moduli spaces of local systems, J. Pure Appl. Algebra155 (2–3) (2001) 167-179. Zbl0972.18012
- [14] Keller B., On differential graded categories, in: International Congress of Mathematicians, vol. II, Eur. Math. Soc., Zürich, 2006, pp. 151-190. Zbl1140.18008MR2275593
- [15] Kontsevich M., Enumeration of rational curves via torus actions. The moduli space of curves, in: Progr. Math., vol. 129, Birkhäuser, Boston, MA, 1995, pp. 335-368. Zbl0885.14028MR1363062
- [16] Kontsevich M., Soibelmann Y., Notes on A-infinity algebras, A-infinity categories and non-commutative geometry. I, math.RA/0606241.
- [17] Laumon G., Moret-Bailly L., Champs algébriques, A Series of Modern Surveys in Mathematics, vol. 39, Springer-Verlag, 2000. MR1771927
- [18] Lazarev A., Homotopy theory of ring spectra and applications toMU-modules, K-Theory24 (3) (2001) 243-281. Zbl1008.55007MR1876800
- [19] Lieblich M., Moduli of complexes on a proper morphism, J. Algebraic Geom.15 (2006) 175-206. Zbl1085.14015MR2177199
- [20] Lurie J., Derived algebraic geometry, Ph.D. thesis, unpublished, available at, http://www.math.harvard.edu/~lurie/.
- [21] Neeman A., Triangulated Categories, Annals of Mathematics Studies, vol. 148, Princeton University Press, Princeton, NJ, 2001, viii+449 pp. Zbl0974.18008MR1812507
- [22] Rezk C., A model for the homotopy theory of homotopy theories, Trans. Amer. Math. Soc.353 (3) (2001) 973-1007. Zbl0961.18008MR1804411
- [23] Schwede S., Shipley B., Algebras and modules in monoidal model categories, Proc. London Math. Soc. (3)80 (2000) 491-511. Zbl1026.18004MR1734325
- [24] Schwede S., Shipley B., Stable model categories are categories of modules, Topology42 (1) (2003) 103-153. Zbl1013.55005MR1928647
- [25] Schwede S., Shipley B., Equivalences of monoidal model categories, Algebraic Geom. Topol.3 (2003) 287-334. Zbl1028.55013MR1997322
- [26] Demazure M., Grothendieck A., Schémas en groupes. I: Propriétés générales des schémas en groupes (SGA 3-1), in: Lecture Notes in Mathematics, vol. 151, Springer-Verlag, Berlin–New York, 1970, xv+564 pp. Zbl0207.51401
- [27] Simpson C., Algebraic (geometric) n-stacks, math.AG/9609014.
- [28] Tabuada G., Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories, C. R. Acad. Sci. Paris340 (2005) 15-19. Zbl1060.18010MR2112034
- [29] Thomas R., A holomorphic Casson invariant for Calabi–Yau 3-folds, and bundles on K3 fibrations, J. Differential Geom.54 (2) (2000) 367-438. Zbl1034.14015
- [30] Toën B., The homotopy theory of dg-categories and derived Morita theory, Invent. Math.167 (3) (2007) 615-667. Zbl1118.18010MR2276263
- [31] Toën B., Derived Hall algebras, Duke Math. J.135 (3) (2006) 587-615. Zbl1117.18011MR2272977
- [32] Toën B., Higher and derived stacks: a global overview, math.AG/0604504. Zbl1183.14001
- [33] Toën B., Vaquié M., Algébrisation des variétés analytiques complexes et catégories dérivées, math.AG/0703555. Zbl1140.18005
- [34] Toën B., Vezzosi G., Homotopical algebraic geometry I: Topos theory, Adv. in Math.193 (2005) 257-372. Zbl1120.14012MR2137288
- [35] Toën, B., Vezzosi, G., Homotopical algebraic geometry II: Geometric stacks and applications, Mem. Amer. Math. Soc., in press. Zbl1145.14003MR2394633
- [36] Toën B., Vezzosi G., From HAG to DAG: derived moduli spaces, in: Greenlees J.P.C. (Ed.), Axiomatic, Enriched and Motivic Homotopy Theory, Proceedings of the NATO Advanced Study Institute, Cambridge, UK (9–20 September 2002), NATO Science Series II, vol. 131, Kluwer, 2004, pp. 175-218. Zbl1076.14002
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.