Relating phase field and sharp interface approaches to structural topology optimization
Luise Blank; Harald Garcke; M. Hassan Farshbaf-Shaker; Vanessa Styles
ESAIM: Control, Optimisation and Calculus of Variations (2014)
- Volume: 20, Issue: 4, page 1025-1058
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topBlank, Luise, et al. "Relating phase field and sharp interface approaches to structural topology optimization." ESAIM: Control, Optimisation and Calculus of Variations 20.4 (2014): 1025-1058. <http://eudml.org/doc/272854>.
@article{Blank2014,
abstract = {A phase field approach for structural topology optimization which allows for topology changes and multiple materials is analyzed. First order optimality conditions are rigorously derived and it is shown via formally matched asymptotic expansions that these conditions converge to classical first order conditions obtained in the context of shape calculus. We also discuss how to deal with triple junctions where e.g. two materials and the void meet. Finally, we present several numerical results for mean compliance problems and a cost involving the least square error to a target displacement.},
author = {Blank, Luise, Garcke, Harald, Hassan Farshbaf-Shaker, M., Styles, Vanessa},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {structural topology optimization; linear elasticity; phase-field method; first order conditions; matched asymptotic expansions; shape calculus; numerical simulations; first order optimality conditions},
language = {eng},
number = {4},
pages = {1025-1058},
publisher = {EDP-Sciences},
title = {Relating phase field and sharp interface approaches to structural topology optimization},
url = {http://eudml.org/doc/272854},
volume = {20},
year = {2014},
}
TY - JOUR
AU - Blank, Luise
AU - Garcke, Harald
AU - Hassan Farshbaf-Shaker, M.
AU - Styles, Vanessa
TI - Relating phase field and sharp interface approaches to structural topology optimization
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2014
PB - EDP-Sciences
VL - 20
IS - 4
SP - 1025
EP - 1058
AB - A phase field approach for structural topology optimization which allows for topology changes and multiple materials is analyzed. First order optimality conditions are rigorously derived and it is shown via formally matched asymptotic expansions that these conditions converge to classical first order conditions obtained in the context of shape calculus. We also discuss how to deal with triple junctions where e.g. two materials and the void meet. Finally, we present several numerical results for mean compliance problems and a cost involving the least square error to a target displacement.
LA - eng
KW - structural topology optimization; linear elasticity; phase-field method; first order conditions; matched asymptotic expansions; shape calculus; numerical simulations; first order optimality conditions
UR - http://eudml.org/doc/272854
ER -
References
top- [1] H. Abels, H. Garcke and G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22 (2012) 1150013. Zbl1242.76342MR2890451
- [2] G. Allaire, Optimization by the Homogenization Method. Springer, Berlin (2002). Zbl0990.35001MR1859696
- [3] G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level set method. J. Comput. Phys.194 (2004) 363–393. Zbl1136.74368MR2033390
- [4] S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn−Hillard fluids. Ann. Inst. Henri Poincaré 7 (1990) 67–90. Zbl0702.49009MR1051228
- [5] J.W. Barrett, H. Garcke and R. Nürnberg, On sharp interface limits of Allen−Cahn/Cahn−Hilliard variational inequalities. Discrete Contin. Dyn. Syst. Ser. S1 (2008) 1–14. Zbl1165.35406MR2375577
- [6] J.W. Barrett, R. Nürnberg and V. Styles, Finite Element approximation of a phase field model for void electromigration. SIAM J. Numer. Anal.46 (2004) 738–772. Zbl1076.78012MR2084234
- [7] M.P. Bendsoe and O. Sigmund, Topology Optimization. Springer, Berlin (2003). Zbl1059.74001MR2008524
- [8] L. Blank, H. Garcke, L. Sarbu and V. Styles, Non-local Allen-Cahn systems: analysis and a primal dual active set method. IMA J. Numer. Anal.33 (2013) 1126–1155. Zbl1279.65087MR3119711
- [9] L. Blank, H. Garcke, L. Sarbu, T. Srisupattarawanit, V. Styles and A. Voigt, Phase-field approaches to structural topology optimization. Constrained Optim. Opt. Control for Partial Differ. Eqs., edited by G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, S. Ulbrich. In vol. 160, Int. Ser. Numer. Math. (2012) 245–255. MR3060477
- [10] J.F. Blowey and C.M. Elliott, Curvature dependent phase boundary motion and parabolic double obstacle problems. IMA J. Math. Appl.47 (1993) 19–60. Zbl0794.35092MR1246337
- [11] B. Bourdin and A. Chambolle, Design-dependent loads in topology optimization. ESAIM: COCV 9 (2003) 19–48. Zbl1066.49029MR1957089
- [12] B. Bourdin and A. Chambolle, The phase-field method in optimal design, in vol. 137 of IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials (2006) 207–215.
- [13] L. Bronsard, H. Garcke and B. Stoth, A multi-phase Mullins-Sekerka system: matched asymptotic expansions and an implicit time discretization for the geometric evolution problem. SIAM J. Appl. Math.60 (1999) 295–315. Zbl0942.35095MR1632810
- [14] L. Bronsard, C. Gui and M. Schatzman, A three layered minimizer in R2 for a variational problem with a symmetric three-well potential. Commun. Pure Appl. Math.47 (1996) 677–715. Zbl0855.35035MR1387190
- [15] L. Bronsard and R. Reitich, On singular three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation. Arch. Rat. Mech. Anal.124 (1993) 355–379. Zbl0785.76085MR1240580
- [16] M. Burger and R. Stainko, Phase-field relaxation of topology optimization with local stress constraints. SIAM J. Control Optim.45 (2006) 1447–1466. Zbl1116.74053MR2257229
- [17] M. Burger, A framework for the construction of level set methods for shape optimization and reconstruction. Interfaces Free Bound.5 (2003) 301–332. Zbl1081.35134MR1998617
- [18] M. Burger, B. Hackl and W. Ring, Incorporating topological derivatives into level set methods. J. Comput. Phys.194 (2004) 344–362. Zbl1044.65053MR2033389
- [19] J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (1958) 258–267.
- [20] L.Q. Chen, Phase-field models for microstructure evolution. Ann. Rev. Mater. Research32 (2002) 113–140.
- [21] P.G. Ciarlet, Mathematical Elasticity, Three Dimensional Elasticity, vol. 1. Elsevier (1988). Zbl0648.73014MR936420
- [22] T.A. Davis, UMFPACK Version 5.2.0 User Guide. University of Florida (2007).
- [23] K. Deckelnick, G. Dziuk and C.M. Elliott, Computation of geometric pdes and mean curvature flow. Acta Numerica (2005) 139–232. Zbl1113.65097MR2168343
- [24] L. Dedè, M.J. Borden, T.J.R. Hughes, Isogeometric analysis for topology optimization with a phase field model, Arch. Comput. Methods Eng.19 (2012) 427–465. MR2969359
- [25] C.M. Elliott and S. Luckhaus, A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy. SFB256, Preprint 195, University Bonn (1999).
- [26] P.C. Fife, Dynamics of internal layers and diffusive interfaces. Vol. 53 of CBMS-NSF Regional Conf. Ser. Appl. Math. SIAM, Philadelphia (1988). Zbl0684.35001MR981594
- [27] P.C. Fife and O. Penrose, Interfacial dynamics for thermodynamically consistent phase-field models with nonconserved order parameter. EJDE (1995) 1–49. Zbl0851.35059MR1361512
- [28] P. Fratzl, O. Penrose and J.L. Lebowitz, Modeling of phase separation in alloys with coherent elastic misfit. J. Statist. Phys. 95 (1999). Zbl0952.74052MR1712452
- [29] H. Garcke, The Γ-limit of the Ginzburg-Landau energy in an elastic medium. AMSA18 (2008) 345–379. Zbl1193.49054MR2489134
- [30] H. Garcke, On Cahn−Hilliard systems with elasticity. Proc. Roy. Soc. Edinburgh Sect. A 133 (2003) 307–331. Zbl1130.74037MR1969816
- [31] H. Garcke, B. Nestler and B. Stoth, On anisotropic order parameter models for multi-phase systems and their sharp interface limits. Phys. D115 (1998) 87–108. Zbl0936.82010MR1616772
- [32] H. Garcke, B. Nestler and B. Stoth, A multi phase field concept: numerical simulations for moving phase boundaries and multiple junctions. SIAM J. Appl. Math.60 (1999) 295–315. Zbl0942.35095MR1740846
- [33] H. Garcke and A. Novick-Cohen, A singular limit for a system of degenerate Cahn−Hilliard equations. Adv. Differ. Eqs. 5 (2000) 401–434. Zbl0988.35019MR1750107
- [34] H. Garcke, R. Nürnberg, V. Styles, Stress and diffusion induced interface motion: Modelling and numerical simulations. Eur. J. Appl. Math.18 (2007) 631–657. Zbl1128.74004MR2381562
- [35] H. Garcke and B. Stinner, Second order phase field asymptotics for multicomponent systems. Interfaces Free Boundaries8 (2006) 131–157. Zbl1106.35116MR2256839
- [36] M. Giaquinta and L. Martinazzi, An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs. Edizioni della normale, Scuola Normale Superiore Pisa (2005). Zbl1262.35001MR2192611
- [37] M.E. Gurtin. An introduction to continuum mechanics. Math. Sci. Engrg. 158 (2003). Zbl0559.73001
- [38] I. Hlavacek and J. Necas, On inequalities of Korn’s type, I. Boundary value problems for elliptic systems of partial differential equations. Arch. Rat. Mech. Anal. 36 (1970) 312–334. Zbl0193.39001MR252844
- [39] F.C. Larché and J.W. Cahn, The effect of self-stress on diffusion in solids. Acta Metall.30 (1982) 1835–1845.
- [40] L. Modica, The gradient theory of phase transitions and minimal interface criterion. Arch. Rat. Mech. Anal.98 (1987) 123–142. Zbl0616.76004MR866718
- [41] F. Murat and S. Simon, Etudes des problèmes d’optimal design. Lect. Notes Comput. Sci. Springer Verlag, Berlin 41 (1976) 54–62. Zbl0334.49013
- [42] A. Novick-Cohen and L. Peres Hari, Geometric motion for a degenerate Allen−Cahn/Cahn−Hillard system: The partial wetting case. Physica D 209 (2005) 205–235. Zbl1094.35065MR2167453
- [43] O.A. Oleinik, A.S. Shamaev and G.A. Yosifian, Mathematical problems in elasticity and homogenization. In vol. 26 of Studies Math. Appl. (1992) 1–398. Zbl0768.73003MR1195131
- [44] S.J. Osher and F. Santosa, Level set methods for optimization problems involving geometry and constraints. I. Frequencies of a two-density inhomogeneous drum. J. Comput. Phys. 171 (2011) 272–288. Zbl1056.74061MR1843648
- [45] S.J. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys.79 (1988) 12–49. Zbl0659.65132MR965860
- [46] N. Owen, J. Rubinstein and P. Sternberg, Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition. Roc. Roy. Soc. London A429 (1990) 505–532. Zbl0722.49021MR1057968
- [47] J. Petersson, Some convergence results in perimeter-controlled topology optimization. Comput. Meth. Appl. Mech. Eng.171 (1999) 123–140. Zbl0947.74050MR1684859
- [48] O. Pironneau, Optimal Shape Design for Elliptic Systems. Springer-Verlag, New York (1984). Zbl0496.93029MR725856
- [49] J. Rubinstein and P. Sternberg, Nonlocal reaction-diffusion equations and nucleation. IMA J. Appl. Math.48 (1992) 249–264. Zbl0763.35051MR1167735
- [50] P. Penzler, M. Rumpf and B. Wirth, A phase-field model for compliance shape optimization in nonlinear elasticity. ESAIM: COCV 18 (2012) 229–258. Zbl1251.49054MR2887934
- [51] A. Schmidt and K.G. Siebert, Design and adaptive finite element software. The finite element toolbox ALBERTA. In vol. 42 of Lect. Notes Comput. Sci. Eng. Springer-Verlag, Berlin (2005). Zbl1068.65138MR2127659
- [52] O. Sigmund, J. Petersson, Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Multidisc Optim.16 (1998) 68–75.
- [53] J. Simon, Differentiation with respect to domain boundary value problems. Numer. Funct. Anal. Optim.2 (1980) 649–687. Zbl0471.35077MR619172
- [54] J. Sokolowski and J.P. Zolesio, Introduction to shape optimization: shape sensitivity analysis, vol. 10. Springer Ser. Comput. Math. Springer, Berlin (1992). Zbl0761.73003MR1215733
- [55] A. Takezawa, S. Nishiwaki and M. Kitamura, Shape and topology optimization based on the phase field method and sensitivity analysis. J. Comput. Phys.229 (2010) 2697–2718. Zbl1185.65109MR2586210
- [56] F. Tröltzsch, Optimal control of partial differential equations: theory, methods and applications, vol. 112. Graduate Studies Math. (2010). Zbl1195.49001MR2583281
- [57] J.D. van der Waals, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density (in Dutch), Vol. 1. Verhaendel. Kronik. Akad. Weten. Amsterdam (1983); Engl. translation by J.S. Rowlinson. J. Stat. Phys. 20 (1979) 197–244. Zbl1245.82006MR523642
- [58] M. Wallin and M. Ristinmaa, Howard’s algorithm in a phase-field topology optimization approach. Int. J. Numer. Meth. Eng.94 (2013) 43–59. MR3040512
- [59] M.Y. Wang and S.W. Zhou, Phase field: A variational method for structural topology optimization. Comput. Model. Eng. Sci.6 (2004) 547–566. Zbl1152.74382MR2108636
- [60] M.Y. Wang and S.W. Zhou, Multimaterial structural topology optimization with a generalized Cahn−Hilliard model of multiphase transition. Struct. Multidisc. Optim. 33 (2007) 89-111. Zbl1245.74077MR2291576
- [61] M.Y. Wang and S.W. Zhou, 3D multi-material structural topology optimization with the generalized Cahn−Hilliard equations. Comput. Model. Eng. Sci. 16 (2006) 83–102.
- [62] E. Zeidler, Nonlinear Functional Analysis and its Applications, I: Fixed-point theorems. Springer-Verlag (1986). Zbl0583.47050MR816732
- [63] E. Zeidler, Nonlinear Functional Analysis and its Applications, IV. Applications Math. Phys. Springer Verlag (1988). Zbl0648.47036MR932255
- [64] E. Zeidler, Nonlinear Functional Analysis and its Applications, II/B. Nonlinear Monotone Operators. Springer Verlag (1990). Zbl0684.47029MR1033498
- [65] J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim.5 (1979) 49–62. Zbl0401.90104MR526427
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.