Relating phase field and sharp interface approaches to structural topology optimization

Luise Blank; Harald Garcke; M. Hassan Farshbaf-Shaker; Vanessa Styles

ESAIM: Control, Optimisation and Calculus of Variations (2014)

  • Volume: 20, Issue: 4, page 1025-1058
  • ISSN: 1292-8119

Abstract

top
A phase field approach for structural topology optimization which allows for topology changes and multiple materials is analyzed. First order optimality conditions are rigorously derived and it is shown via formally matched asymptotic expansions that these conditions converge to classical first order conditions obtained in the context of shape calculus. We also discuss how to deal with triple junctions where e.g. two materials and the void meet. Finally, we present several numerical results for mean compliance problems and a cost involving the least square error to a target displacement.

How to cite

top

Blank, Luise, et al. "Relating phase field and sharp interface approaches to structural topology optimization." ESAIM: Control, Optimisation and Calculus of Variations 20.4 (2014): 1025-1058. <http://eudml.org/doc/272854>.

@article{Blank2014,
abstract = {A phase field approach for structural topology optimization which allows for topology changes and multiple materials is analyzed. First order optimality conditions are rigorously derived and it is shown via formally matched asymptotic expansions that these conditions converge to classical first order conditions obtained in the context of shape calculus. We also discuss how to deal with triple junctions where e.g. two materials and the void meet. Finally, we present several numerical results for mean compliance problems and a cost involving the least square error to a target displacement.},
author = {Blank, Luise, Garcke, Harald, Hassan Farshbaf-Shaker, M., Styles, Vanessa},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {structural topology optimization; linear elasticity; phase-field method; first order conditions; matched asymptotic expansions; shape calculus; numerical simulations; first order optimality conditions},
language = {eng},
number = {4},
pages = {1025-1058},
publisher = {EDP-Sciences},
title = {Relating phase field and sharp interface approaches to structural topology optimization},
url = {http://eudml.org/doc/272854},
volume = {20},
year = {2014},
}

TY - JOUR
AU - Blank, Luise
AU - Garcke, Harald
AU - Hassan Farshbaf-Shaker, M.
AU - Styles, Vanessa
TI - Relating phase field and sharp interface approaches to structural topology optimization
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2014
PB - EDP-Sciences
VL - 20
IS - 4
SP - 1025
EP - 1058
AB - A phase field approach for structural topology optimization which allows for topology changes and multiple materials is analyzed. First order optimality conditions are rigorously derived and it is shown via formally matched asymptotic expansions that these conditions converge to classical first order conditions obtained in the context of shape calculus. We also discuss how to deal with triple junctions where e.g. two materials and the void meet. Finally, we present several numerical results for mean compliance problems and a cost involving the least square error to a target displacement.
LA - eng
KW - structural topology optimization; linear elasticity; phase-field method; first order conditions; matched asymptotic expansions; shape calculus; numerical simulations; first order optimality conditions
UR - http://eudml.org/doc/272854
ER -

References

top
  1. [1] H. Abels, H. Garcke and G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22 (2012) 1150013. Zbl1242.76342MR2890451
  2. [2] G. Allaire, Optimization by the Homogenization Method. Springer, Berlin (2002). Zbl0990.35001MR1859696
  3. [3] G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level set method. J. Comput. Phys.194 (2004) 363–393. Zbl1136.74368MR2033390
  4. [4] S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn−Hillard fluids. Ann. Inst. Henri Poincaré 7 (1990) 67–90. Zbl0702.49009MR1051228
  5. [5] J.W. Barrett, H. Garcke and R. Nürnberg, On sharp interface limits of Allen−Cahn/Cahn−Hilliard variational inequalities. Discrete Contin. Dyn. Syst. Ser. S1 (2008) 1–14. Zbl1165.35406MR2375577
  6. [6] J.W. Barrett, R. Nürnberg and V. Styles, Finite Element approximation of a phase field model for void electromigration. SIAM J. Numer. Anal.46 (2004) 738–772. Zbl1076.78012MR2084234
  7. [7] M.P. Bendsoe and O. Sigmund, Topology Optimization. Springer, Berlin (2003). Zbl1059.74001MR2008524
  8. [8] L. Blank, H. Garcke, L. Sarbu and V. Styles, Non-local Allen-Cahn systems: analysis and a primal dual active set method. IMA J. Numer. Anal.33 (2013) 1126–1155. Zbl1279.65087MR3119711
  9. [9] L. Blank, H. Garcke, L. Sarbu, T. Srisupattarawanit, V. Styles and A. Voigt, Phase-field approaches to structural topology optimization. Constrained Optim. Opt. Control for Partial Differ. Eqs., edited by G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, S. Ulbrich. In vol. 160, Int. Ser. Numer. Math. (2012) 245–255. MR3060477
  10. [10] J.F. Blowey and C.M. Elliott, Curvature dependent phase boundary motion and parabolic double obstacle problems. IMA J. Math. Appl.47 (1993) 19–60. Zbl0794.35092MR1246337
  11. [11] B. Bourdin and A. Chambolle, Design-dependent loads in topology optimization. ESAIM: COCV 9 (2003) 19–48. Zbl1066.49029MR1957089
  12. [12] B. Bourdin and A. Chambolle, The phase-field method in optimal design, in vol. 137 of IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials (2006) 207–215. 
  13. [13] L. Bronsard, H. Garcke and B. Stoth, A multi-phase Mullins-Sekerka system: matched asymptotic expansions and an implicit time discretization for the geometric evolution problem. SIAM J. Appl. Math.60 (1999) 295–315. Zbl0942.35095MR1632810
  14. [14] L. Bronsard, C. Gui and M. Schatzman, A three layered minimizer in R2 for a variational problem with a symmetric three-well potential. Commun. Pure Appl. Math.47 (1996) 677–715. Zbl0855.35035MR1387190
  15. [15] L. Bronsard and R. Reitich, On singular three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation. Arch. Rat. Mech. Anal.124 (1993) 355–379. Zbl0785.76085MR1240580
  16. [16] M. Burger and R. Stainko, Phase-field relaxation of topology optimization with local stress constraints. SIAM J. Control Optim.45 (2006) 1447–1466. Zbl1116.74053MR2257229
  17. [17] M. Burger, A framework for the construction of level set methods for shape optimization and reconstruction. Interfaces Free Bound.5 (2003) 301–332. Zbl1081.35134MR1998617
  18. [18] M. Burger, B. Hackl and W. Ring, Incorporating topological derivatives into level set methods. J. Comput. Phys.194 (2004) 344–362. Zbl1044.65053MR2033389
  19. [19] J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (1958) 258–267. 
  20. [20] L.Q. Chen, Phase-field models for microstructure evolution. Ann. Rev. Mater. Research32 (2002) 113–140. 
  21. [21] P.G. Ciarlet, Mathematical Elasticity, Three Dimensional Elasticity, vol. 1. Elsevier (1988). Zbl0648.73014MR936420
  22. [22] T.A. Davis, UMFPACK Version 5.2.0 User Guide. University of Florida (2007). 
  23. [23] K. Deckelnick, G. Dziuk and C.M. Elliott, Computation of geometric pdes and mean curvature flow. Acta Numerica (2005) 139–232. Zbl1113.65097MR2168343
  24. [24] L. Dedè, M.J. Borden, T.J.R. Hughes, Isogeometric analysis for topology optimization with a phase field model, Arch. Comput. Methods Eng.19 (2012) 427–465. MR2969359
  25. [25] C.M. Elliott and S. Luckhaus, A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy. SFB256, Preprint 195, University Bonn (1999). 
  26. [26] P.C. Fife, Dynamics of internal layers and diffusive interfaces. Vol. 53 of CBMS-NSF Regional Conf. Ser. Appl. Math. SIAM, Philadelphia (1988). Zbl0684.35001MR981594
  27. [27] P.C. Fife and O. Penrose, Interfacial dynamics for thermodynamically consistent phase-field models with nonconserved order parameter. EJDE (1995) 1–49. Zbl0851.35059MR1361512
  28. [28] P. Fratzl, O. Penrose and J.L. Lebowitz, Modeling of phase separation in alloys with coherent elastic misfit. J. Statist. Phys. 95 (1999). Zbl0952.74052MR1712452
  29. [29] H. Garcke, The Γ-limit of the Ginzburg-Landau energy in an elastic medium. AMSA18 (2008) 345–379. Zbl1193.49054MR2489134
  30. [30] H. Garcke, On Cahn−Hilliard systems with elasticity. Proc. Roy. Soc. Edinburgh Sect. A 133 (2003) 307–331. Zbl1130.74037MR1969816
  31. [31] H. Garcke, B. Nestler and B. Stoth, On anisotropic order parameter models for multi-phase systems and their sharp interface limits. Phys. D115 (1998) 87–108. Zbl0936.82010MR1616772
  32. [32] H. Garcke, B. Nestler and B. Stoth, A multi phase field concept: numerical simulations for moving phase boundaries and multiple junctions. SIAM J. Appl. Math.60 (1999) 295–315. Zbl0942.35095MR1740846
  33. [33] H. Garcke and A. Novick-Cohen, A singular limit for a system of degenerate Cahn−Hilliard equations. Adv. Differ. Eqs. 5 (2000) 401–434. Zbl0988.35019MR1750107
  34. [34] H. Garcke, R. Nürnberg, V. Styles, Stress and diffusion induced interface motion: Modelling and numerical simulations. Eur. J. Appl. Math.18 (2007) 631–657. Zbl1128.74004MR2381562
  35. [35] H. Garcke and B. Stinner, Second order phase field asymptotics for multicomponent systems. Interfaces Free Boundaries8 (2006) 131–157. Zbl1106.35116MR2256839
  36. [36] M. Giaquinta and L. Martinazzi, An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs. Edizioni della normale, Scuola Normale Superiore Pisa (2005). Zbl1262.35001MR2192611
  37. [37] M.E. Gurtin. An introduction to continuum mechanics. Math. Sci. Engrg. 158 (2003). Zbl0559.73001
  38. [38] I. Hlavacek and J. Necas, On inequalities of Korn’s type, I. Boundary value problems for elliptic systems of partial differential equations. Arch. Rat. Mech. Anal. 36 (1970) 312–334. Zbl0193.39001MR252844
  39. [39] F.C. Larché and J.W. Cahn, The effect of self-stress on diffusion in solids. Acta Metall.30 (1982) 1835–1845. 
  40. [40] L. Modica, The gradient theory of phase transitions and minimal interface criterion. Arch. Rat. Mech. Anal.98 (1987) 123–142. Zbl0616.76004MR866718
  41. [41] F. Murat and S. Simon, Etudes des problèmes d’optimal design. Lect. Notes Comput. Sci. Springer Verlag, Berlin 41 (1976) 54–62. Zbl0334.49013
  42. [42] A. Novick-Cohen and L. Peres Hari, Geometric motion for a degenerate Allen−Cahn/Cahn−Hillard system: The partial wetting case. Physica D 209 (2005) 205–235. Zbl1094.35065MR2167453
  43. [43] O.A. Oleinik, A.S. Shamaev and G.A. Yosifian, Mathematical problems in elasticity and homogenization. In vol. 26 of Studies Math. Appl. (1992) 1–398. Zbl0768.73003MR1195131
  44. [44] S.J. Osher and F. Santosa, Level set methods for optimization problems involving geometry and constraints. I. Frequencies of a two-density inhomogeneous drum. J. Comput. Phys. 171 (2011) 272–288. Zbl1056.74061MR1843648
  45. [45] S.J. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys.79 (1988) 12–49. Zbl0659.65132MR965860
  46. [46] N. Owen, J. Rubinstein and P. Sternberg, Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition. Roc. Roy. Soc. London A429 (1990) 505–532. Zbl0722.49021MR1057968
  47. [47] J. Petersson, Some convergence results in perimeter-controlled topology optimization. Comput. Meth. Appl. Mech. Eng.171 (1999) 123–140. Zbl0947.74050MR1684859
  48. [48] O. Pironneau, Optimal Shape Design for Elliptic Systems. Springer-Verlag, New York (1984). Zbl0496.93029MR725856
  49. [49] J. Rubinstein and P. Sternberg, Nonlocal reaction-diffusion equations and nucleation. IMA J. Appl. Math.48 (1992) 249–264. Zbl0763.35051MR1167735
  50. [50] P. Penzler, M. Rumpf and B. Wirth, A phase-field model for compliance shape optimization in nonlinear elasticity. ESAIM: COCV 18 (2012) 229–258. Zbl1251.49054MR2887934
  51. [51] A. Schmidt and K.G. Siebert, Design and adaptive finite element software. The finite element toolbox ALBERTA. In vol. 42 of Lect. Notes Comput. Sci. Eng. Springer-Verlag, Berlin (2005). Zbl1068.65138MR2127659
  52. [52] O. Sigmund, J. Petersson, Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Multidisc Optim.16 (1998) 68–75. 
  53. [53] J. Simon, Differentiation with respect to domain boundary value problems. Numer. Funct. Anal. Optim.2 (1980) 649–687. Zbl0471.35077MR619172
  54. [54] J. Sokolowski and J.P. Zolesio, Introduction to shape optimization: shape sensitivity analysis, vol. 10. Springer Ser. Comput. Math. Springer, Berlin (1992). Zbl0761.73003MR1215733
  55. [55] A. Takezawa, S. Nishiwaki and M. Kitamura, Shape and topology optimization based on the phase field method and sensitivity analysis. J. Comput. Phys.229 (2010) 2697–2718. Zbl1185.65109MR2586210
  56. [56] F. Tröltzsch, Optimal control of partial differential equations: theory, methods and applications, vol. 112. Graduate Studies Math. (2010). Zbl1195.49001MR2583281
  57. [57] J.D. van der Waals, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density (in Dutch), Vol. 1. Verhaendel. Kronik. Akad. Weten. Amsterdam (1983); Engl. translation by J.S. Rowlinson. J. Stat. Phys. 20 (1979) 197–244. Zbl1245.82006MR523642
  58. [58] M. Wallin and M. Ristinmaa, Howard’s algorithm in a phase-field topology optimization approach. Int. J. Numer. Meth. Eng.94 (2013) 43–59. MR3040512
  59. [59] M.Y. Wang and S.W. Zhou, Phase field: A variational method for structural topology optimization. Comput. Model. Eng. Sci.6 (2004) 547–566. Zbl1152.74382MR2108636
  60. [60] M.Y. Wang and S.W. Zhou, Multimaterial structural topology optimization with a generalized Cahn−Hilliard model of multiphase transition. Struct. Multidisc. Optim. 33 (2007) 89-111. Zbl1245.74077MR2291576
  61. [61] M.Y. Wang and S.W. Zhou, 3D multi-material structural topology optimization with the generalized Cahn−Hilliard equations. Comput. Model. Eng. Sci. 16 (2006) 83–102. 
  62. [62] E. Zeidler, Nonlinear Functional Analysis and its Applications, I: Fixed-point theorems. Springer-Verlag (1986). Zbl0583.47050MR816732
  63. [63] E. Zeidler, Nonlinear Functional Analysis and its Applications, IV. Applications Math. Phys. Springer Verlag (1988). Zbl0648.47036MR932255
  64. [64] E. Zeidler, Nonlinear Functional Analysis and its Applications, II/B. Nonlinear Monotone Operators. Springer Verlag (1990). Zbl0684.47029MR1033498
  65. [65] J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim.5 (1979) 49–62. Zbl0401.90104MR526427

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.