Riemannian metrics on 2D-manifolds related to the Euler−Poinsot rigid body motion
Bernard Bonnard; Olivier Cots; Jean-Baptiste Pomet; Nataliya Shcherbakova
ESAIM: Control, Optimisation and Calculus of Variations (2014)
- Volume: 20, Issue: 3, page 864-893
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topBonnard, Bernard, et al. "Riemannian metrics on 2D-manifolds related to the Euler−Poinsot rigid body motion." ESAIM: Control, Optimisation and Calculus of Variations 20.3 (2014): 864-893. <http://eudml.org/doc/272921>.
@article{Bonnard2014,
abstract = {The Euler−Poinsot rigid body motion is a standard mechanical system and it is a model for left-invariant Riemannian metrics on SO(3). In this article using the Serret−Andoyer variables we parameterize the solutions and compute the Jacobi fields in relation with the conjugate locus evaluation. Moreover, the metric can be restricted to a 2D-surface, and the conjugate points of this metric are evaluated using recent works on surfaces of revolution. Another related 2D-metric on S2 associated to the dynamics of spin particles with Ising coupling is analysed using both geometric techniques and numerical simulations.},
author = {Bonnard, Bernard, Cots, Olivier, Pomet, Jean-Baptiste, Shcherbakova, Nataliya},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Euler−poinsot rigid body motion; conjugate locus on surfaces of revolution; Serret−Andoyer metric; spins dynamics; Euler-Poinsot rigid body motion; conjugate locus; surfaces of revolution; Serret-Andoyer metric; spin dynamics},
language = {eng},
number = {3},
pages = {864-893},
publisher = {EDP-Sciences},
title = {Riemannian metrics on 2D-manifolds related to the Euler−Poinsot rigid body motion},
url = {http://eudml.org/doc/272921},
volume = {20},
year = {2014},
}
TY - JOUR
AU - Bonnard, Bernard
AU - Cots, Olivier
AU - Pomet, Jean-Baptiste
AU - Shcherbakova, Nataliya
TI - Riemannian metrics on 2D-manifolds related to the Euler−Poinsot rigid body motion
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2014
PB - EDP-Sciences
VL - 20
IS - 3
SP - 864
EP - 893
AB - The Euler−Poinsot rigid body motion is a standard mechanical system and it is a model for left-invariant Riemannian metrics on SO(3). In this article using the Serret−Andoyer variables we parameterize the solutions and compute the Jacobi fields in relation with the conjugate locus evaluation. Moreover, the metric can be restricted to a 2D-surface, and the conjugate points of this metric are evaluated using recent works on surfaces of revolution. Another related 2D-metric on S2 associated to the dynamics of spin particles with Ising coupling is analysed using both geometric techniques and numerical simulations.
LA - eng
KW - Euler−poinsot rigid body motion; conjugate locus on surfaces of revolution; Serret−Andoyer metric; spins dynamics; Euler-Poinsot rigid body motion; conjugate locus; surfaces of revolution; Serret-Andoyer metric; spin dynamics
UR - http://eudml.org/doc/272921
ER -
References
top- [1] A.A. Agrachev, U. Boscain and M. Sigalotti, A Gauss–Bonnet-like Formula on Two-Dimensional Almost-Riemannian Manifolds. Discrete Contin. Dyn. Syst. A20 (2008) 801-822. Zbl1198.49041MR2379474
- [2] V.I. Arnold, Mathematical Methods of Classical Mechanics, vol. 60. Translated from the Russian, edited by K. Vogtmann and A. Weinstein. 2nd edition. Grad. Texts Math. Springer-Verlag, New York (1989). Zbl0386.70001MR997295
- [3] L. Bates and F. Fassò, The conjugate locus for the Euler top. I. The axisymmetric case. Int. Math. Forum 2 (2007) 2109-2139. Zbl1151.53348MR2354391
- [4] G.D. Birkhoff, Dynamical Systems, vol. IX. AMS Colloquium Publications (1927). Zbl0171.05402
- [5] A.V. Bolsinov and A.T. Fomenko, Integrable Hamiltonian Systems. Geometry, Topology, Classification. Translated from the Russian original 1999. Chapman & Hall/CRC, Boca Raton, FL (2004) 730. Zbl1056.37075MR2036760
- [6] B. Bonnard, J.-B. Caillau, R. Sinclair and M. Tanaka, Conjugate and cut loci of a two-sphere of revolution with application to optimal control. Ann. Inst. Henri Poincaré Anal. Non Linéaire26 (2009) 1081-1098. Zbl1184.53036MR2542715
- [7] B. Bonnard, J.-B. Caillau and G. Janin, Conjugate-cut loci and injectivity domains on two-spheres of revolution. ESAIM: COCV 19 (2013) 533-554. Zbl1267.53042MR3049722
- [8] B. Bonnard, O. Cots, N. Shcherbakova and D. Sugny, The energy minimization problem for two-level dissipative quantum systems. J. Math. Phys. 51 (2010) 092705, 44. Zbl1309.81118MR2742815
- [9] U. Boscain, G. Charlot, J.-P. Gauthier, S. Guérin and H.-R. Jauslin, Optimal Control in laser-induced population transfer for two and three-level quantum systems. J. Math. Phys.43 (2002) 2107-2132. Zbl1059.81195MR1893663
- [10] U. Boscain, T. Chambrion and G. Charlot, Nonisotropic 3-level Quantum Systems: Complete Solutions for Minimum Time and Minimum Energy. Discrete Contin. Dyn. Systems B5 (2005) 957-990. Zbl1084.81083MR2170218
- [11] U. Boscain and F. Rossi, Invariant Carnot-Caratheodory metrics on S3, SO(3), SL(2), and lens spaces. SIAM J. Control Optim. 47 (2008) 1851-1878. Zbl1170.53016MR2421332
- [12] J.-B. Caillau, O. Cots and J. Gergaud, Differential continuation for regular optimal control problems. Optim. Methods Softw. 27 (2011) 177–196. Zbl1248.49025MR2901956
- [13] D. D’Alessandro, Introduction to quantum control and dynamics. Appl. Nonlinear Sci. Ser. Chapman & Hall/CRC (2008). Zbl1139.81001MR2357229
- [14] H.T. Davis, Introduction to nonlinear differential and integral equations. Dover Publications Inc., New York (1962). Zbl0106.28904MR181773
- [15] P. Gurfil, A. Elipe, W. Tangren and M. Efroimsky, The Serret−Andoyer formalism in rigid-body dynamics I. Symmetries and perturbations. Regul. Chaotic Dyn. 12 (2007) 389-425. Zbl1229.37112MR2350331
- [16] J. Itoh and K. Kiyohara, The cut loci and the conjugate loci on ellipsoids. Manuscripta Math.114 (2004) 247-264. Zbl1076.53042MR2067796
- [17] V. Jurdjevic, Geometric Control Theory, vol. 52. Camb. Stud. Adv. Math. Cambridge University Press, Cambridge (1997). Zbl0940.93005MR1425878
- [18] N. Khaneja, R. Brockett and S.J. Glaser, Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer. Phys. Rev. A 65 (2002) 032301. MR1891763
- [19] M. Lara and S. Ferrer, Closed form Integration of the Hitzl-Breakwell problem in action-angle variables. IAA-AAS-DyCoSS1-01-02 (AAS 12-302), 27-39.
- [20] D. Lawden, Elliptic Functions and Applications, vol. 80. Appl. Math. Sci. Springer-Verlag, New York (1989). Zbl0689.33001MR1007595
- [21] M.H. Levitt, Spin dynamics, basis of Nuclear Magnetic Resonance, 2nd edition. John Wiley and sons (2007).
- [22] H. Poincaré, Sur les lignes géodésiques des surfaces convexes. Trans. Amer. Math. Soc.6 (1905) 237-274. Zbl36.0669.01MR1500710JFM36.0669.01
- [23] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The mathematical theory of optimal processes. Interscience Publishers John Wiley & Sons, Inc., New York-London (1962). Zbl0117.31702MR166037
- [24] K. Shiohama, T. Shioya and M. Tanaka, The Geometry of Total Curvature on Complete Open Surfaces, vol. 159. Camb. Tracts Math. Cambridge University Press, Cambridge (2003). Zbl1086.53056MR2028047
- [25] R. Sinclair and M. Tanaka, The cut locus of a two-sphere of revolution and Toponogov’s comparison theorem. Tohoku Math. J.59 (2007) 379-399. Zbl1158.53033MR2365347
- [26] A.M. Vershik and V.Ya. Gershkovich, Nonholonomic Dynamical Systems, Geometry of Distributions and Variational Problems. in Dynamical Systems VII. In vol. 16 of Encyclopedia of Math. Sci. Springer Verlag (1991) 10-81. Zbl0797.58007
- [27] H. YuanGeometry, optimal control and quantum computing, Ph.D. Thesis. Harvard (2006). MR2708758
- [28] H. Yuan, R. Zeier and N. Khaneja, Elliptic functions and efficient control of Ising spin chains with unequal coupling. Phys. Rev. A 77 (2008) 032340.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.