Riemannian metrics on 2D-manifolds related to the Euler−Poinsot rigid body motion

Bernard Bonnard; Olivier Cots; Jean-Baptiste Pomet; Nataliya Shcherbakova

ESAIM: Control, Optimisation and Calculus of Variations (2014)

  • Volume: 20, Issue: 3, page 864-893
  • ISSN: 1292-8119

Abstract

top
The Euler−Poinsot rigid body motion is a standard mechanical system and it is a model for left-invariant Riemannian metrics on SO(3). In this article using the Serret−Andoyer variables we parameterize the solutions and compute the Jacobi fields in relation with the conjugate locus evaluation. Moreover, the metric can be restricted to a 2D-surface, and the conjugate points of this metric are evaluated using recent works on surfaces of revolution. Another related 2D-metric on S2 associated to the dynamics of spin particles with Ising coupling is analysed using both geometric techniques and numerical simulations.

How to cite

top

Bonnard, Bernard, et al. "Riemannian metrics on 2D-manifolds related to the Euler−Poinsot rigid body motion." ESAIM: Control, Optimisation and Calculus of Variations 20.3 (2014): 864-893. <http://eudml.org/doc/272921>.

@article{Bonnard2014,
abstract = {The Euler−Poinsot rigid body motion is a standard mechanical system and it is a model for left-invariant Riemannian metrics on SO(3). In this article using the Serret−Andoyer variables we parameterize the solutions and compute the Jacobi fields in relation with the conjugate locus evaluation. Moreover, the metric can be restricted to a 2D-surface, and the conjugate points of this metric are evaluated using recent works on surfaces of revolution. Another related 2D-metric on S2 associated to the dynamics of spin particles with Ising coupling is analysed using both geometric techniques and numerical simulations.},
author = {Bonnard, Bernard, Cots, Olivier, Pomet, Jean-Baptiste, Shcherbakova, Nataliya},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Euler−poinsot rigid body motion; conjugate locus on surfaces of revolution; Serret−Andoyer metric; spins dynamics; Euler-Poinsot rigid body motion; conjugate locus; surfaces of revolution; Serret-Andoyer metric; spin dynamics},
language = {eng},
number = {3},
pages = {864-893},
publisher = {EDP-Sciences},
title = {Riemannian metrics on 2D-manifolds related to the Euler−Poinsot rigid body motion},
url = {http://eudml.org/doc/272921},
volume = {20},
year = {2014},
}

TY - JOUR
AU - Bonnard, Bernard
AU - Cots, Olivier
AU - Pomet, Jean-Baptiste
AU - Shcherbakova, Nataliya
TI - Riemannian metrics on 2D-manifolds related to the Euler−Poinsot rigid body motion
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2014
PB - EDP-Sciences
VL - 20
IS - 3
SP - 864
EP - 893
AB - The Euler−Poinsot rigid body motion is a standard mechanical system and it is a model for left-invariant Riemannian metrics on SO(3). In this article using the Serret−Andoyer variables we parameterize the solutions and compute the Jacobi fields in relation with the conjugate locus evaluation. Moreover, the metric can be restricted to a 2D-surface, and the conjugate points of this metric are evaluated using recent works on surfaces of revolution. Another related 2D-metric on S2 associated to the dynamics of spin particles with Ising coupling is analysed using both geometric techniques and numerical simulations.
LA - eng
KW - Euler−poinsot rigid body motion; conjugate locus on surfaces of revolution; Serret−Andoyer metric; spins dynamics; Euler-Poinsot rigid body motion; conjugate locus; surfaces of revolution; Serret-Andoyer metric; spin dynamics
UR - http://eudml.org/doc/272921
ER -

References

top
  1. [1] A.A. Agrachev, U. Boscain and M. Sigalotti, A Gauss–Bonnet-like Formula on Two-Dimensional Almost-Riemannian Manifolds. Discrete Contin. Dyn. Syst. A20 (2008) 801-822. Zbl1198.49041MR2379474
  2. [2] V.I. Arnold, Mathematical Methods of Classical Mechanics, vol. 60. Translated from the Russian, edited by K. Vogtmann and A. Weinstein. 2nd edition. Grad. Texts Math. Springer-Verlag, New York (1989). Zbl0386.70001MR997295
  3. [3] L. Bates and F. Fassò, The conjugate locus for the Euler top. I. The axisymmetric case. Int. Math. Forum 2 (2007) 2109-2139. Zbl1151.53348MR2354391
  4. [4] G.D. Birkhoff, Dynamical Systems, vol. IX. AMS Colloquium Publications (1927). Zbl0171.05402
  5. [5] A.V. Bolsinov and A.T. Fomenko, Integrable Hamiltonian Systems. Geometry, Topology, Classification. Translated from the Russian original 1999. Chapman & Hall/CRC, Boca Raton, FL (2004) 730. Zbl1056.37075MR2036760
  6. [6] B. Bonnard, J.-B. Caillau, R. Sinclair and M. Tanaka, Conjugate and cut loci of a two-sphere of revolution with application to optimal control. Ann. Inst. Henri Poincaré Anal. Non Linéaire26 (2009) 1081-1098. Zbl1184.53036MR2542715
  7. [7] B. Bonnard, J.-B. Caillau and G. Janin, Conjugate-cut loci and injectivity domains on two-spheres of revolution. ESAIM: COCV 19 (2013) 533-554. Zbl1267.53042MR3049722
  8. [8] B. Bonnard, O. Cots, N. Shcherbakova and D. Sugny, The energy minimization problem for two-level dissipative quantum systems. J. Math. Phys. 51 (2010) 092705, 44. Zbl1309.81118MR2742815
  9. [9] U. Boscain, G. Charlot, J.-P. Gauthier, S. Guérin and H.-R. Jauslin, Optimal Control in laser-induced population transfer for two and three-level quantum systems. J. Math. Phys.43 (2002) 2107-2132. Zbl1059.81195MR1893663
  10. [10] U. Boscain, T. Chambrion and G. Charlot, Nonisotropic 3-level Quantum Systems: Complete Solutions for Minimum Time and Minimum Energy. Discrete Contin. Dyn. Systems B5 (2005) 957-990. Zbl1084.81083MR2170218
  11. [11] U. Boscain and F. Rossi, Invariant Carnot-Caratheodory metrics on S3, SO(3), SL(2), and lens spaces. SIAM J. Control Optim. 47 (2008) 1851-1878. Zbl1170.53016MR2421332
  12. [12] J.-B. Caillau, O. Cots and J. Gergaud, Differential continuation for regular optimal control problems. Optim. Methods Softw. 27 (2011) 177–196. Zbl1248.49025MR2901956
  13. [13] D. D’Alessandro, Introduction to quantum control and dynamics. Appl. Nonlinear Sci. Ser. Chapman & Hall/CRC (2008). Zbl1139.81001MR2357229
  14. [14] H.T. Davis, Introduction to nonlinear differential and integral equations. Dover Publications Inc., New York (1962). Zbl0106.28904MR181773
  15. [15] P. Gurfil, A. Elipe, W. Tangren and M. Efroimsky, The Serret−Andoyer formalism in rigid-body dynamics I. Symmetries and perturbations. Regul. Chaotic Dyn. 12 (2007) 389-425. Zbl1229.37112MR2350331
  16. [16] J. Itoh and K. Kiyohara, The cut loci and the conjugate loci on ellipsoids. Manuscripta Math.114 (2004) 247-264. Zbl1076.53042MR2067796
  17. [17] V. Jurdjevic, Geometric Control Theory, vol. 52. Camb. Stud. Adv. Math. Cambridge University Press, Cambridge (1997). Zbl0940.93005MR1425878
  18. [18] N. Khaneja, R. Brockett and S.J. Glaser, Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer. Phys. Rev. A 65 (2002) 032301. MR1891763
  19. [19] M. Lara and S. Ferrer, Closed form Integration of the Hitzl-Breakwell problem in action-angle variables. IAA-AAS-DyCoSS1-01-02 (AAS 12-302), 27-39. 
  20. [20] D. Lawden, Elliptic Functions and Applications, vol. 80. Appl. Math. Sci. Springer-Verlag, New York (1989). Zbl0689.33001MR1007595
  21. [21] M.H. Levitt, Spin dynamics, basis of Nuclear Magnetic Resonance, 2nd edition. John Wiley and sons (2007). 
  22. [22] H. Poincaré, Sur les lignes géodésiques des surfaces convexes. Trans. Amer. Math. Soc.6 (1905) 237-274. Zbl36.0669.01MR1500710JFM36.0669.01
  23. [23] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The mathematical theory of optimal processes. Interscience Publishers John Wiley & Sons, Inc., New York-London (1962). Zbl0117.31702MR166037
  24. [24] K. Shiohama, T. Shioya and M. Tanaka, The Geometry of Total Curvature on Complete Open Surfaces, vol. 159. Camb. Tracts Math. Cambridge University Press, Cambridge (2003). Zbl1086.53056MR2028047
  25. [25] R. Sinclair and M. Tanaka, The cut locus of a two-sphere of revolution and Toponogov’s comparison theorem. Tohoku Math. J.59 (2007) 379-399. Zbl1158.53033MR2365347
  26. [26] A.M. Vershik and V.Ya. Gershkovich, Nonholonomic Dynamical Systems, Geometry of Distributions and Variational Problems. in Dynamical Systems VII. In vol. 16 of Encyclopedia of Math. Sci. Springer Verlag (1991) 10-81. Zbl0797.58007
  27. [27] H. YuanGeometry, optimal control and quantum computing, Ph.D. Thesis. Harvard (2006). MR2708758
  28. [28] H. Yuan, R. Zeier and N. Khaneja, Elliptic functions and efficient control of Ising spin chains with unequal coupling. Phys. Rev. A 77 (2008) 032340. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.