Conjugate-cut loci and injectivity domains on two-spheres of revolution

Bernard Bonnard; Jean-Baptiste Caillau; Gabriel Janin

ESAIM: Control, Optimisation and Calculus of Variations (2013)

  • Volume: 19, Issue: 2, page 533-554
  • ISSN: 1292-8119

Abstract

top
In a recent article [B. Bonnard, J.-B. Caillau, R. Sinclair and M. Tanaka, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009) 1081–1098], we relate the computation of the conjugate and cut loci of a family of metrics on two-spheres of revolution whose polar form is g = dϕ2 + m(ϕ)dθ2 to the period mapping of the ϕ-variable. One purpose of this article is to use this relation to evaluate the cut and conjugate loci for a family of metrics arising as a deformation of the round sphere and to determine the convexity properties of the injectivity domains of such metrics. These properties have applications in optimal control of space and quantum mechanics, and in optimal transport.

How to cite

top

Bonnard, Bernard, Caillau, Jean-Baptiste, and Janin, Gabriel. "Conjugate-cut loci and injectivity domains on two-spheres of revolution." ESAIM: Control, Optimisation and Calculus of Variations 19.2 (2013): 533-554. <http://eudml.org/doc/272950>.

@article{Bonnard2013,
abstract = {In a recent article [B. Bonnard, J.-B. Caillau, R. Sinclair and M. Tanaka, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009) 1081–1098], we relate the computation of the conjugate and cut loci of a family of metrics on two-spheres of revolution whose polar form is g = dϕ2 + m(ϕ)dθ2 to the period mapping of the ϕ-variable. One purpose of this article is to use this relation to evaluate the cut and conjugate loci for a family of metrics arising as a deformation of the round sphere and to determine the convexity properties of the injectivity domains of such metrics. These properties have applications in optimal control of space and quantum mechanics, and in optimal transport.},
author = {Bonnard, Bernard, Caillau, Jean-Baptiste, Janin, Gabriel},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {conjugate and cut loci; injectivity domain; optimal control; optimal transport},
language = {eng},
number = {2},
pages = {533-554},
publisher = {EDP-Sciences},
title = {Conjugate-cut loci and injectivity domains on two-spheres of revolution},
url = {http://eudml.org/doc/272950},
volume = {19},
year = {2013},
}

TY - JOUR
AU - Bonnard, Bernard
AU - Caillau, Jean-Baptiste
AU - Janin, Gabriel
TI - Conjugate-cut loci and injectivity domains on two-spheres of revolution
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2013
PB - EDP-Sciences
VL - 19
IS - 2
SP - 533
EP - 554
AB - In a recent article [B. Bonnard, J.-B. Caillau, R. Sinclair and M. Tanaka, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009) 1081–1098], we relate the computation of the conjugate and cut loci of a family of metrics on two-spheres of revolution whose polar form is g = dϕ2 + m(ϕ)dθ2 to the period mapping of the ϕ-variable. One purpose of this article is to use this relation to evaluate the cut and conjugate loci for a family of metrics arising as a deformation of the round sphere and to determine the convexity properties of the injectivity domains of such metrics. These properties have applications in optimal control of space and quantum mechanics, and in optimal transport.
LA - eng
KW - conjugate and cut loci; injectivity domain; optimal control; optimal transport
UR - http://eudml.org/doc/272950
ER -

References

top
  1. [1] A. Agrachev, U. Boscain and M. Sigalotti, A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds. Discrete Contin. Dyn. Syst.20 (2008) 801–822. Zbl1198.49041MR2379474
  2. [2] M. Berger, Volume et rayon d’injectivité dans les variétés riemanniennes de dimension 3. Osaka J. Math.14 (1977) 191–200. Zbl0353.53028MR467595
  3. [3] M. Berger, A panoramic view of Riemannian geometry. Springer-Verlag, Berlin (2003). Zbl1038.53002MR2002701
  4. [4] G. Besson, Géodésiques des surfaces de révolution. Séminaire de Théorie Spectrale et Géométrie S9 (1991) 33–38. 
  5. [5] V.G. Boltyanskii, Sufficient conditions for optimality and the justification of the dynamic programming method. SIAM J. Control4 (1966) 326–361. Zbl0143.32004MR197205
  6. [6] B. Bonnard and J.-B. Caillau, Metrics with equatorial singularities on the sphere. HAL preprint No.00319299 (2008) 1–30. Zbl1305.53040MR3262637
  7. [7] B. Bonnard and J.-B. Caillau, Geodesic flow of the averaged controlled Kepler equation. Forum Math.21 (2009) 797–814. Zbl1171.49030MR2560391
  8. [8] B. Bonnard, J.-B. Caillau, R. Sinclair and M. Tanaka, Conjugate and cut loci of a two-sphere of revolution with application to optimal control. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009) 1081–1098. Zbl1184.53036MR2542715
  9. [9] B. Bonnard, J.-B. Caillau and L. Rifford, Convexity of injectivity domains on the ellipsoid of revolution: the oblate case, C. R. Acad. Sci. Paris, Sér. I 348 (2010) 1315–1318. Zbl1225.53006MR2745347
  10. [10] B. Bonnard, J.-B. Caillau and O. Cots, Energy minimization in two-level dissipative quantum control: the integrable case. Proc. of 8th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Dresden (2010). Discrete Contin. Dyn. Syst. suppl. (2011) 229–239. Zbl1306.81050MR2987400
  11. [11] B. Bonnard, G. Charlot, R. Ghezzi and G. Janin, The sphere and the cut locus at a tangency point in two-dimensional almost-Riemannian geometry. J. Dyn. Control Syst.17 (2011) 141–161. Zbl1209.53014MR2765542
  12. [12] B. Bonnard, O. Cots and N. Shcherbakova, Energy minimization problem in two-level dissipative quantum systems. J. Math. Sci. 147 (2012). Zbl1286.81104
  13. [13] J.-B. Caillau, B. Daoud and J. Gergaud, On some Riemannian aspects of two and three-body controlled problems. Recent Advances in Optimization and its Applications in Engineering. Springer (2010) 205–224. Proc. of the 14th Belgium-Franco-German conference on Optimization, Leuven (2009). 
  14. [14] A. Faridi and E. Schucking, Geodesics and deformed spheres. Proc. Amer. Math. Soc.100 (1987) 522–525. Zbl0622.53025MR891157
  15. [15] A. Figalli, L. Rifford and C. Villani, Nearly round spheres look convex. Amer. J. Math.134 (2012) 109–139. Zbl1241.53031MR2876141
  16. [16] G.-H. Halphen, Traité des fonctions elliptiques et de leurs applications. Première partie, Gauthier-Villars (1886). JFM22.0447.01
  17. [17] J. Itoh and K. Kiyohara, The cut loci and the conjugate loci on ellipsoids. Manuscripta Math.114 (2004) 247–264. Zbl1076.53042MR2067796
  18. [18] G. Janin, Contrôle optimal et applications au transfert d’orbite et à la géométrie presque Riemannienne. Ph.D. thesis, Université de Bourgogne (2010). 
  19. [19] D. Lawden, Elliptic functions and applications. Springer-Verlag (1989). Zbl0689.33001MR1007595
  20. [20] S.B. Myers, Connections between differential geometry and topology I. Simply connected surfaces II. Duke Math. J. 1 (1935) 376–391; 2 (1936) 95–102. Zbl0012.27502MR1545884JFM61.0787.02
  21. [21] H. Poincaré, Sur les lignes géodésiques des surfaces convexes. Trans. Amer. Math. Soc.6 (1905) 237–274. Zbl36.0669.01MR1500710JFM36.0669.01
  22. [22] K. Shiohama, T. Shioya and M. Tanaka, The geometry of total curvature on complete open surfaces. Cambridge University Press (2003). Zbl1086.53056MR2028047
  23. [23] R. Sinclair and M. Tanaka, The cut locus of a two-sphere of revolution and Toponogov’s comparison theorem. Tohoku Math. J.59 (2007) 379–399. Zbl1158.53033MR2365347
  24. [24] M. Spivak, A comprehensive introduction to differential geometry II. Publish or Perish (1979). Zbl0439.53001
  25. [25] C. Villani, Optimal transport, Old and new. Springer-Verlag (2009). Zbl1156.53003MR2459454

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.