On torsional rigidity and principal frequencies: an invitation to the Kohler−Jobin rearrangement technique

Lorenzo Brasco

ESAIM: Control, Optimisation and Calculus of Variations (2014)

  • Volume: 20, Issue: 2, page 315-338
  • ISSN: 1292-8119

Abstract

top
We generalize to the p-Laplacian Δp a spectral inequality proved by M.-T. Kohler−Jobin. As a particular case of such a generalization, we obtain a sharp lower bound on the first Dirichlet eigenvalue of Δp of a set in terms of its p-torsional rigidity. The result is valid in every space dimension, for every 1 < p < ∞ and for every open set with finite measure. Moreover, it holds by replacing the first eigenvalue with more general optimal Poincaré-Sobolev constants. The method of proof is based on a generalization of the rearrangement technique introduced by Kohler−Jobin.

How to cite

top

Brasco, Lorenzo. "On torsional rigidity and principal frequencies: an invitation to the Kohler−Jobin rearrangement technique." ESAIM: Control, Optimisation and Calculus of Variations 20.2 (2014): 315-338. <http://eudml.org/doc/272938>.

@article{Brasco2014,
abstract = {We generalize to the p-Laplacian Δp a spectral inequality proved by M.-T. Kohler−Jobin. As a particular case of such a generalization, we obtain a sharp lower bound on the first Dirichlet eigenvalue of Δp of a set in terms of its p-torsional rigidity. The result is valid in every space dimension, for every 1 &lt; p &lt; ∞ and for every open set with finite measure. Moreover, it holds by replacing the first eigenvalue with more general optimal Poincaré-Sobolev constants. The method of proof is based on a generalization of the rearrangement technique introduced by Kohler−Jobin.},
author = {Brasco, Lorenzo},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {torsional rigidity; nonlinear eigenvalue problems; spherical rearrangements; -Laplacian},
language = {eng},
number = {2},
pages = {315-338},
publisher = {EDP-Sciences},
title = {On torsional rigidity and principal frequencies: an invitation to the Kohler−Jobin rearrangement technique},
url = {http://eudml.org/doc/272938},
volume = {20},
year = {2014},
}

TY - JOUR
AU - Brasco, Lorenzo
TI - On torsional rigidity and principal frequencies: an invitation to the Kohler−Jobin rearrangement technique
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2014
PB - EDP-Sciences
VL - 20
IS - 2
SP - 315
EP - 338
AB - We generalize to the p-Laplacian Δp a spectral inequality proved by M.-T. Kohler−Jobin. As a particular case of such a generalization, we obtain a sharp lower bound on the first Dirichlet eigenvalue of Δp of a set in terms of its p-torsional rigidity. The result is valid in every space dimension, for every 1 &lt; p &lt; ∞ and for every open set with finite measure. Moreover, it holds by replacing the first eigenvalue with more general optimal Poincaré-Sobolev constants. The method of proof is based on a generalization of the rearrangement technique introduced by Kohler−Jobin.
LA - eng
KW - torsional rigidity; nonlinear eigenvalue problems; spherical rearrangements; -Laplacian
UR - http://eudml.org/doc/272938
ER -

References

top
  1. [1] L. Ambrosio and P. Tilli, Topics on Analysis in Metric Spaces, vol. 25 of Oxford Lect. Series Math. Appl. Oxford University Press, Oxford (2004). Zbl1080.28001MR2039660
  2. [2] A. Alvino, V. Ferone, P.-L. Lions and G. Trombetti, Convex symmetrization and applications. Ann. Institut Henri Poincaré Anal. Non Linéaire14 (1997) 275–293. Zbl0877.35040MR1441395
  3. [3] M. Belloni and B. Kawohl, The pseudo p-Laplace eigenvalue problem and viscosity solution as p → ∞. ESAIM: COCV 10 (2004) 28–52. Zbl1092.35074MR2084254
  4. [4] L. Brasco, G. De Philippis and B. Velichkov, Faber-Krahn inequalities in sharp quantitative form, preprint (2013), available at http://cvgmt.sns.it/paper/2161/ 
  5. [5] D. Bucur and G. Buttazzo, Variational Methods in Shape Optimization Problems, vol. 65 of Progress Nonlinear Differ. Eqs. Birkhäuser Verlag, Basel (2005). Zbl1117.49001MR2150214
  6. [6] T. Carroll and J. Ratzkin, Interpolating between torsional rigidity and principal frequency. J. Math. Anal. Appl.379 (2011) 818–826. Zbl1216.35016MR2784361
  7. [7] E. DiBenedetto, C1 + α local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal.7 (1983) 827–850. Zbl0539.35027MR709038
  8. [8] I. Ekeland, Convexity methods in Hamiltonian mechanics. Springer-Verlag (1990). Zbl0707.70003MR1051888
  9. [9] L. Esposito and C. Trombetti, Convex symmetrization and Pólya-Szegő inequality. Nonlinear Anal.56 (2004) 43–62. Zbl1038.26014MR2031435
  10. [10] A. Ferone and R. Volpicelli, Convex rearrangement: equality cases in the Pólya-Szegő inequality, Calc. Var. Partial Differ. Eqs.21 (2004) 259–272. Zbl1116.49022MR2094322
  11. [11] A. Figalli, F. Maggi and A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math.81 (2010) 167–211. Zbl1196.49033MR2672283
  12. [12] M. Flucher, Extremal functions for the Moser-Trudinger inequality in two dimensions. Comment. Math. Helv.67 (1992) 471–497. Zbl0763.58008MR1171306
  13. [13] I. Fragalà, F. Gazzola and J. Lamboley, Sharp bounds for the p-torsion of convex planar domains, in Geometric Properties for Parabolic and Elliptic PDE’s, vol. 2 of Springer INdAM Series (2013) 97–115. Zbl1278.49050MR3050229
  14. [14] G. Franzina, P. D. Lamberti, Existence and uniqueness for a p-Laplacian nonlinear eigenvalue problem. Electron. J. Differ. Eqs. (2010) 10. Zbl1188.35125MR2602859
  15. [15] N. Fusco, F. Maggi and A. Pratelli, Stability estimates for certain Faber-Krahn, isocapacitary and Cheeger inequalities. Ann. Sci. Norm. Super. Pisa Cl. Sci.8 (2009) 51–71. Zbl1176.49047MR2512200
  16. [16] A. Henrot, Extremum problems for eigenvalues of elliptic operators, Frontiers in Mathematics. Birkhäuser Verlag, Basel (2006). Zbl1109.35081MR2251558
  17. [17] S. Kesavan, Symmetrization and applications, in vol. 3 of Series in Analysis. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2006). Zbl1110.35002MR2238193
  18. [18] M.-T. Kohler-Jobin, Symmetrization with equal Dirichlet integrals. SIAM J. Math. Anal.13 (1982), 153–161. Zbl0484.35006MR641547
  19. [19] M.-T. Kohler-Jobin, Une méthode de comparaison isopérimétrique de fonctionnelles de domaines de la physique mathématique. I. Une démonstration de la conjecture isopérimétrique P λ 2 π j 0 4 / 2 P λ2≥π j04/2 de Pólya et Szegő, Z. Angew. Math. Phys. 29 (1978) 757–766. Zbl0427.73056MR511908
  20. [20] M.-T. Kohler-Jobin, Démonstration de l’inégalité isopérimétrique P λ 2 π j 0 4 / 2 P λ2≥π j04/2, conjecturée par Pólya et Szegő. C.R. Acad. Sci. Paris Sér. A-B 281 (1975) A119–A121. Zbl0303.52003MR385691
  21. [21] G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Analysis. Theory, Methods & Appl. 12 (1988) 1203–1219. Zbl0675.35042MR969499
  22. [22] K.-C. Lin, Extremal functions for Moser’s inequality. Trans. Amer. Math. Soc.348 (1996) 2663–2671. Zbl0861.49001MR1333394
  23. [23] J. Moser, A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20 (1970/71) 1077–1092. Zbl0213.13001
  24. [24] G. Pólya, G. Szegő, Isoperimetric inequalities in mathematical physics, in vol. 27 of Ann. Math. Studies. Princeton University Press, Princeton, N. J. (1951). Zbl0044.38301
  25. [25] R. Schneider, Convex bodies: the Brunn-Minkowski theory. Cambridge University Press (1993). Zbl1287.52001MR1216521
  26. [26] G. Talenti, Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa3 (1976) 697–718. Zbl0341.35031MR601601
  27. [27] N.S. Trudinger, On imbeddings into Orlicz spaces and some applications. J. Math. Mech.17 (1967), 473–483. Zbl0163.36402MR216286

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.