The pseudo-p-Laplace eigenvalue problem and viscosity solutions as p → ∞
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 10, Issue: 1, page 28-52
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topBelloni, Marino, and Kawohl, Bernd. "The pseudo-p-Laplace eigenvalue problem and viscosity solutions as p → ∞." ESAIM: Control, Optimisation and Calculus of Variations 10.1 (2010): 28-52. <http://eudml.org/doc/90720>.
@article{Belloni2010,
abstract = {
We consider the pseudo-p-Laplacian, an anisotropic
version of the p-Laplacian operator for $p\not=2$. We study
relevant properties of its first eigenfunction for finite p and
the limit problem as p → ∞.
},
author = {Belloni, Marino, Kawohl, Bernd},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Eigenvalue; anisotropic; pseudo-Laplace; viscosity solution; minimal Lipschitz extension; concavity;
symmetry; convex rearrangement; pseudo--Laplacian operator; symmetry},
language = {eng},
month = {3},
number = {1},
pages = {28-52},
publisher = {EDP Sciences},
title = {The pseudo-p-Laplace eigenvalue problem and viscosity solutions as p → ∞},
url = {http://eudml.org/doc/90720},
volume = {10},
year = {2010},
}
TY - JOUR
AU - Belloni, Marino
AU - Kawohl, Bernd
TI - The pseudo-p-Laplace eigenvalue problem and viscosity solutions as p → ∞
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 10
IS - 1
SP - 28
EP - 52
AB -
We consider the pseudo-p-Laplacian, an anisotropic
version of the p-Laplacian operator for $p\not=2$. We study
relevant properties of its first eigenfunction for finite p and
the limit problem as p → ∞.
LA - eng
KW - Eigenvalue; anisotropic; pseudo-Laplace; viscosity solution; minimal Lipschitz extension; concavity;
symmetry; convex rearrangement; pseudo--Laplacian operator; symmetry
UR - http://eudml.org/doc/90720
ER -
References
top- W. Allegretto and Yin Xi Huang, A Picone's identity for the p-Laplacian and applications. Nonlin. Anal. TMA32 (1998) 819-830.
- A. Alvino, V. Ferone, G. Trombetti and P.L. Lions, Convex symmetrization and applications. Ann. Inst. H. Poincaré Anal. Non Linéaire14 (1997) 275-293.
- A. Anane, Simplicité et isolation de la première valeur propre du p-laplacien avec poids. C. R. Acad. Sci. Paris Sér. I Math.305 (1987) 725-728.
- A. Anane, A. Benazzi and O. Chakrone, Sur le spectre d'un opérateur quasilininéaire elliptique "dégénéré". Proyecciones19 (2000) 227-248.
- G. Aronsson, Extension of functions satisfying Lipschitz conditions. Ark. Math.6 (1967) 551-561.
- G. Aronsson, On the partial differential equation . Ark. Math.7 (1968) 395-425.
- G. Barles, Remarks on uniqueness results of the first eigenvalue of the p-Laplacian. Ann. Fac. Sci. Toulouse9 (1988) 65-75.
- G. Barles and J. Busca, Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term. Comm. Partial Differential Equations26 (2001) 2323-2337.
- M. Belloni and B. Kawohl, A direct uniqueness proof for equations involving the p-Laplace operator. Manuscripta Math.109 (2002) 229-231.
- T. Bhattacharya, E. DiBenedetto and J. Manfredi, Limits as p → ∞ of Δpup = ƒ and related extremal problems. Rend. Sem. Mat., Fasciolo Speciale Nonlinear PDE's. Univ. Torino (1989) 15-68.
- T. Bhattacharya, An elementary proof of the Harnack inequality for non-negative infinity-superharmonic functions. Electron. J. Differential Equations2001 (2001) 1-8.
- H. Brezis and L.Oswald, Remarks on sublinear problems. Nonlinear Anal.10 (1986) 55-64.
- M.G. Crandall, L.C. Evans and R.F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. Partial Differential Equations13 (2001) 123-139.
- M.G. Crandall, H. Ishii and P.L. Lions, User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.)27 (1992) 1-67.
- Y.G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom.33 (1991) 749-786.
- J.I. Diaz and J.E. Saá, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires. C. R. Acad. Sci. Paris Sér. I Math.305 (1987) 521-524.
- E. DiBenedetto, C1+α local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. TMA7 (1983) 827-850.
- A. Elbert, A half-linear second order differential equation. Qualitative theory of differential equations, (Szeged 1979). Colloq. Math. Soc. János Bolyai30 (1981) 153-180.
- N. Fukagai, M. Ito and K. Narukawa, Limit as p → ∞ of p-Laplace eigenvalue problems and L∞ inequality of the Poincaré type. Differ. Integral Equations 12 (1999) 183-206.
- M. Giaquinta and E. Giusti, On the regularity of the minima of variational integrals. Acta Math.148 (1982) 31-46.
- D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of second Order. Springer Verlag, Berlin-Heidelberg-New York (1977).
- T. Ishibashi and S. Koike, On fully nonlinear pdes derived from variational problems of Lp-norms. SIAM J. Math. Anal.33 (2001) 545-569.
- U. Janfalk, Behaviour in the limit, as p → ∞, of minimizers of functionals involving p-Dirichlet integrals. SIAM J. Math. Anal.27 (1996) 341-360.
- R. Jensen, Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient. Arch. Rational Mech. Anal.123 (1993) 51-74.
- P. Juutinen, Personal Communications.
- P. Juutinen, P. Lindqvist and J. Manfredi, The ∞-eigenvalue problem. Arch. Rational Mech. Anal.148 (1999) 89-105.
- B. Kawohl, Rearrangements and convexity of level sets in PDE. Springer, Lecture Notes in Math. 1150 (1985).
- B. Kawohl, A family of torsional creep problems. J. Reine Angew. Math.410 (1990) 1-22.
- B. Kawohl, Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discrete Contin. Dynam. Systems6 (2000) 683-690.
- B. Kawohl and N. Kutev, Viscosity solutions for degenerate and nonmonotone elliptic equations, edited by B. da Vega, A. Sequeira and J. Videman. Plenum Press, New York & London, Appl. Nonlinear Anal. (1999) 185-210.
- O.A. Ladyzhenskaya and N.N. Ural'tseva, Linear and quasilinear equations of elliptic type,Second edition, revised. Izdat. “Nauka” Moscow (1973). English translation by Academic Press.
- G.M. Lieberman, Gradient estimates for a new class of degenerate elliptic and parabolic equations. Ann. Scuola Normale Superiore Pisa Ser. IV21 (1994) 497-522.
- P. Lindqvist, A nonlinear eigenvalue problem. Rocky Mountain J.23 (1993) 281-288.
- P. Lindqvist, On the equation div =0. Proc. Amer. Math. Soc.109 (1990) 157-164 .
- P. Lindqvist, Addendum to "On the equation div =0". Proc. Amer. Math. Soc.116 (1992) 583-584.
- P. Lindqvist, Some remarkable sine and cosine functions. Ricerche Mat.44(1995) 269-290.
- J.L. Lions, Quelques méthodes de résolutions des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris (1969).
- M. Ohnuma and K. Sato, Singular degenerate parabolic equations with applications to the p-Laplace diffusion equation. Comm. Partial Differential Equations22 (1997) 381-411.
- M. Ôtani, Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations. J. Funct. Anal.76 (1988) 140-159.
- S. Sakaguchi, Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems. Ann. Scuola Normale Superiore Pisa14 (1987) 404-421.
- G. Talenti, Personal Communication, letter dated Oct. 15, 2001
- P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations. J. Differential Equations51 (1984) 126-150.
- N. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure Appl. Math.20 (1967) 721-747.
- N.N. Ural'tseva and A.B. Urdaletova, The boundedness of the gradients of generalized solutions of degenerate quasilinear nonuniformly elliptic equations. Vestnik Leningrad Univ. Math.16 (1984) 263-270.
- I.M. Višik, Sur la résolutions des problèmes aux limites pour des équations paraboliques quasi-linèaires d'ordre quelconque. Mat. Sbornik59 (1962) 289-325.
- I.M. Višik, Quasilinear strongly elliptic systems of differential equations in divergence form. Trans. Moscow. Math. Soc. 12 (1963) 140-208; Translation from Tr. Mosk. Mat. Obs. 12 (1963) 125-184.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.