Quasiconvex relaxation of multidimensional control problems with integrands f(t, ξ, v)

Marcus Wagner

ESAIM: Control, Optimisation and Calculus of Variations (2011)

  • Volume: 17, Issue: 1, page 190-221
  • ISSN: 1292-8119

Abstract

top
We prove a general relaxation theorem for multidimensional control problems of Dieudonné-Rashevsky type with nonconvex integrands f(t, ξ, v) in presence of a convex control restriction. The relaxed problem, wherein the integrand f has been replaced by its lower semicontinuous quasiconvex envelope with respect to the gradient variable, possesses the same finite minimal value as the original problem, and admits a global minimizer. As an application, we provide existence theorems for the image registration problem with convex and polyconvex regularization terms.

How to cite

top

Wagner, Marcus. "Quasiconvex relaxation of multidimensional control problems with integrands f(t, ξ, v)." ESAIM: Control, Optimisation and Calculus of Variations 17.1 (2011): 190-221. <http://eudml.org/doc/272959>.

@article{Wagner2011,
abstract = {We prove a general relaxation theorem for multidimensional control problems of Dieudonné-Rashevsky type with nonconvex integrands f(t, ξ, v) in presence of a convex control restriction. The relaxed problem, wherein the integrand f has been replaced by its lower semicontinuous quasiconvex envelope with respect to the gradient variable, possesses the same finite minimal value as the original problem, and admits a global minimizer. As an application, we provide existence theorems for the image registration problem with convex and polyconvex regularization terms.},
author = {Wagner, Marcus},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {quasiconvex functions with infinite values; lower semicontinuous quasiconvex envelope; multidimensional control problem; relaxation; existence of global minimizers; image registration; polyconvex regularization},
language = {eng},
number = {1},
pages = {190-221},
publisher = {EDP-Sciences},
title = {Quasiconvex relaxation of multidimensional control problems with integrands f(t, ξ, v)},
url = {http://eudml.org/doc/272959},
volume = {17},
year = {2011},
}

TY - JOUR
AU - Wagner, Marcus
TI - Quasiconvex relaxation of multidimensional control problems with integrands f(t, ξ, v)
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2011
PB - EDP-Sciences
VL - 17
IS - 1
SP - 190
EP - 221
AB - We prove a general relaxation theorem for multidimensional control problems of Dieudonné-Rashevsky type with nonconvex integrands f(t, ξ, v) in presence of a convex control restriction. The relaxed problem, wherein the integrand f has been replaced by its lower semicontinuous quasiconvex envelope with respect to the gradient variable, possesses the same finite minimal value as the original problem, and admits a global minimizer. As an application, we provide existence theorems for the image registration problem with convex and polyconvex regularization terms.
LA - eng
KW - quasiconvex functions with infinite values; lower semicontinuous quasiconvex envelope; multidimensional control problem; relaxation; existence of global minimizers; image registration; polyconvex regularization
UR - http://eudml.org/doc/272959
ER -

References

top
  1. [1] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Rat. Mech. Anal.86 (1984) 125–145. Zbl0565.49010MR751305
  2. [2] L. Alvarez, J. Weickert and J. Sánchez, Reliable estimation of dense optical flow fields with large displacements. Int. J. Computer Vision39 (2000) 41–56. Zbl1060.68635
  3. [3] G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Second edn., Springer, New York etc. (2006). Zbl1110.35001MR2244145
  4. [4] J.M. Ball and F. Murat, W1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal.58 (1984) 225–253. Zbl0549.46019MR759098
  5. [5] N. Bourbaki, Éléments de Mathématique, Livre VI : Intégration, Chapitres I–IV. Hermann, Paris, France (1952). Zbl1116.28002
  6. [6] M. Brokate, Pontryagin's principle for control problems in age-dependent population dynamics. J. Math. Biology23 (1985) 75–101. Zbl0599.92017MR821685
  7. [7] A. Brøndsted, An Introduction to Convex Polytopes. Springer, New York-Heidelberg-Berlin (1983). Zbl0509.52001MR683612
  8. [8] C. Brune, H. Maurer and M. Wagner, Detection of intensity and motion edges within optical flow via multidimensional control. SIAM J. Imaging Sci.2 (2009) 1190–1210. Zbl1181.49029MR2559164
  9. [9] G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Pitman Research Notes in Mathematics 207. Longman, Harlow (1989). Zbl0669.49005MR1020296
  10. [10] S. Conti, Quasiconvex functions incorporating volumetric constraints are rank-one convex. J. Math. Pures Appl.90 (2008) 15–30. Zbl1146.49009MR2435211
  11. [11] B. Dacorogna, Introduction to the Calculus of Variations. Imperial College Press, London, UK (2004) Zbl1159.49001MR2162819
  12. [12] B. Dacorogna, Direct Methods in the Calculus of Variations. Second edn., Springer, New York etc. (2008). Zbl0703.49001MR2361288
  13. [13] B. Dacorogna and P. Marcellini, General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial case. Acta Math.178 (1997) 1–37. Zbl0901.49027MR1448710
  14. [14] M. Droske and M. Rumpf, A variational approach to nonrigid morphological image registration. SIAM J. Appl. Math.64 (2004) 668–687. Zbl1063.49013MR2049668
  15. [15] N. Dunford and J.T. Schwartz, Linear Operators. Part I: General Theory. Wiley-Interscience, New York etc. (1988). Zbl0635.47001MR1009162
  16. [16] I. Ekeland and R. Témam, Convex Analysis and Variational Problems. Second edn., SIAM, Philadelphia, USA (1999). Zbl0939.49002MR1727362
  17. [17] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton etc. (1992). Zbl0804.28001MR1158660
  18. [18] G. Feichtinger, G. Tragler and V.M. Veliov, Optimality conditions for age-structured control systems. J. Math. Anal. Appl.288 (2003) 47–68. Zbl1042.49035MR2019744
  19. [19] L. Franek, M. Franek, H. Maurer and M. Wagner, Image restoration and simultaneous edge detection by optimal control methods. BTU Cottbus, Preprint-Reihe Mathematik, Preprint Nr. M-05/2008. Optim. Contr. Appl. Meth. (submitted). Zbl1301.49073
  20. [20] L.A. Gallardo and M.A. Meju, Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data. Geophys. Res. Lett. 30 (2003) 1658. 
  21. [21] E. Haber and J. Modersitzki, Intensity gradient based registration and fusion of multi-modal images. Methods Inf. Med.46 (2007) 292–299. 
  22. [22] S. Henn and K. Witsch, A multigrid approach for minimizing a nonlinear functional for digital image matching. Computing64 (2000) 339–348. Zbl0961.65120MR1782025
  23. [23] S. Henn and K. Witsch, Iterative multigrid regularization techniques for image matching. SIAM J. Sci. Comput.23 (2001) 1077–1093. Zbl0999.65057MR1885591
  24. [24] G. Hermosillo, C. Chefd'hotel and O. Faugeras, Variational methods for multimodal image matching. Int. J. Computer Vision50 (2002) 329–343. Zbl1012.68788
  25. [25] W. Hinterberger, O. Scherzer, C. Schnörr and J. Weickert, Analysis of optical flow models in the framework of the calculus of variations. Num. Funct. Anal. Optim.23 (2002) 69–89. Zbl1016.49002MR1900411
  26. [26] D. Kinderlehrer and P. Pedregal, Characterizations of Young measures generated by gradients. Arch. Rat. Mech. Anal.115 (1991) 329–365. Zbl0754.49020MR1120852
  27. [27] P. Marcellini and C. Sbordone, Semicontinuity problems in the calculus of variations. Nonlinear Anal.4 (1980) 241–257. Zbl0537.49002MR563807
  28. [28] J. Modersitzki, Numerical Methods for Image Registration. Oxford University Press, Oxford, UK (2004). Zbl1055.68140MR2035877
  29. [29] C.B. Morrey, Multiple Integrals in the Calculus of Variations, Grundlehren 130. Springer, Berlin-Heidelberg-New York (1966). Zbl0142.38701MR202511
  30. [30] S. Pickenhain and M. Wagner, Critical points in relaxed deposit problems, in Calculus of Variations and Optimal Control, Technion 98, Vol. II, A. Ioffe, S. Reich and I. Shafrir Eds., Research Notes in Mathematics 411, Chapman & Hall/CRC Press, Boca Raton etc. (2000) 217–236. Zbl0960.49021MR1713865
  31. [31] T. Roubíček, Relaxation in Optimization Theory and Variational Calculus. De Gruyter, Berlin-New York (1997). Zbl0880.49002
  32. [32] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge, UK (1993). Zbl1287.52001MR1216521
  33. [33] T.W. Ting, Elastic-plastic torsion of convex cylindrical bars. J. Math. Mech.19 (1969) 531–551. Zbl0197.23301MR250546
  34. [34] T.W. Ting, Elastic-plastic torsion problem III. Arch. Rat. Mech. Anal.34 (1969) 228–244. Zbl0179.53903MR264889
  35. [35] M. Wagner, Erweiterungen des mehrdimensionalen Pontrjaginschen Maximumprinzips auf meßbare und beschränkte sowie distributionelle Steuerungen. Ph.D. Thesis, University of Leipzig, Germany (1996). 
  36. [36] M. Wagner, Mehrdimensionale Steuerungsprobleme mit quasikonvexen Integranden. Habilitation Thesis, BTU Cottbus, Germany (2006). 
  37. [37] M. Wagner, Nonconvex relaxation properties of multidimensional control problems, in Recent Advances in Optimization, A. Seeger Ed., Lecture Notes in Economics and Mathematical Systems 563, Springer, Berlin etc. (2006) 233–250. Zbl1108.49028MR2191161
  38. [38] M. Wagner, Quasiconvex relaxation of multidimensional control problems. Adv. Math. Sci. Appl.18 (2008) 305–327. Zbl1154.49007MR2459684
  39. [39] M. Wagner, Jensen's inequality for the lower semicontinuous quasiconvex envelope and relaxation of multidimensional control problems. J. Math. Anal. Appl.355 (2009) 606–619. Zbl1162.49016MR2521737
  40. [40] M. Wagner, On the lower semicontinuous quasiconvex envelope for unbounded integrands (I). ESAIM: COCV 15 (2009) 68–101. Zbl1173.26009MR2488569
  41. [41] M. Wagner, On the lower semicontinuous quasiconvex envelope for unbounded integrands (II): Representation by generalized controls. J. Convex Anal.16 (2009) 441–472. Zbl1186.26025MR2559954
  42. [42] M. Wagner, Pontryagin's maximum principle for multidimensional control problems in image processing. J. Optim. Theory Appl.140 (2009) 543–576. Zbl1159.49033MR2481615
  43. [43] M. Wagner, Elastic/hyperelastic image registration unter Nebenbedingungen als mehrdimensionales Steuerungsproblem. Preprint-Reihe Mathematik, Preprint Nr. M-09/2009, BTU Cottbus, Germany (2009). MR2481615

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.