Connectedness of fractals associated with Arnoux–Rauzy substitutions
Valérie Berthé; Timo Jolivet; Anne Siegel
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2014)
- Volume: 48, Issue: 3, page 249-266
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topBerthé, Valérie, Jolivet, Timo, and Siegel, Anne. "Connectedness of fractals associated with Arnoux–Rauzy substitutions." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 48.3 (2014): 249-266. <http://eudml.org/doc/273028>.
@article{Berthé2014,
abstract = {Rauzy fractals are compact sets with fractal boundary that can be associated with any unimodular Pisot irreducible substitution. These fractals can be defined as the Hausdorff limit of a sequence of compact sets, where each set is a renormalized projection of a finite union of faces of unit cubes. We exploit this combinatorial definition to prove the connectedness of the Rauzy fractal associated with any finite product of three-letter Arnoux–Rauzy substitutions.},
author = {Berthé, Valérie, Jolivet, Timo, Siegel, Anne},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {Rauzy fractals; Arnoux–Rauzy substitutions; discrete planes; Rauzy fractal; three-letter substitutions; unimodular Pisot irreducible substitution; combinatorics on words},
language = {eng},
number = {3},
pages = {249-266},
publisher = {EDP-Sciences},
title = {Connectedness of fractals associated with Arnoux–Rauzy substitutions},
url = {http://eudml.org/doc/273028},
volume = {48},
year = {2014},
}
TY - JOUR
AU - Berthé, Valérie
AU - Jolivet, Timo
AU - Siegel, Anne
TI - Connectedness of fractals associated with Arnoux–Rauzy substitutions
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 3
SP - 249
EP - 266
AB - Rauzy fractals are compact sets with fractal boundary that can be associated with any unimodular Pisot irreducible substitution. These fractals can be defined as the Hausdorff limit of a sequence of compact sets, where each set is a renormalized projection of a finite union of faces of unit cubes. We exploit this combinatorial definition to prove the connectedness of the Rauzy fractal associated with any finite product of three-letter Arnoux–Rauzy substitutions.
LA - eng
KW - Rauzy fractals; Arnoux–Rauzy substitutions; discrete planes; Rauzy fractal; three-letter substitutions; unimodular Pisot irreducible substitution; combinatorics on words
UR - http://eudml.org/doc/273028
ER -
References
top- [1] B. Adamczewski, C. Frougny, A. Siegel and W. Steiner, Rational numbers with purely periodic β-expansion. Bull. London Math. Soc.42 (2010) 538–552. Zbl1211.11010MR2651949
- [2] R.L. Adler, Symbolic dynamics and Markov partitions. Bull. Amer. Math. Soc. (N.S.) 35 (1998) 1–56. Zbl0892.58019MR1477538
- [3] S. Akiyama and N. Gjini, Connectedness of number theoretic tilings. Discrete Math. Theor. Comput. Sci. 7 (2005) 269–312 (electronic). Zbl1162.11366MR2183177
- [4] S. Akiyama, G. Barat, V. Berthé and A. Siegel, Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions. Monatsh. Math.155 (2008) 377–419. Zbl1190.11005MR2461585
- [5] P. Arnoux and G. Rauzy, Représentation géométrique de suites de complexit*error*é2n + 1. Bull. Soc. Math. France119 (1991) 199–215. Zbl0789.28011MR1116845
- [6] P. Arnoux, V. Berthé, T. Fernique and D. Jamet, Functional stepped surfaces, flips, and generalized substitutions. Theoret. Comput. Sci.380 (2007) 251–265. Zbl1119.68136MR2330996
- [7] P. Arnoux, V. Berthé and S. Ito, Discrete planes, Z2-actions, Jacobi-Perron algorithm and substitutions. Ann. Inst. Fourier 52 (2002) 305–349. Zbl1017.11006MR1906478
- [8] P. Arnoux, V. Berthé and A. Siegel, Two-dimensional iterated morphisms and discrete planes. Theoret. Comput. Sci.319 (2004) 145–176. Zbl1068.37004MR2074952
- [9] P. Arnoux and S. Ito, Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon Stevin8 (2001) 181–207. Zbl1007.37001MR1838930
- [10] M. Barge and J. Kwapisz, Geometric theory of unimodular Pisot substitutions. Amer. J. Math.128 (2006) 1219–1282. Zbl1152.37011MR2262174
- [11] M. Barge, B. Diamond and R. Swanson, The branch locus for one-dimensional Pisot tiling spaces. Fund. Math.204 (2009) 215–240. Zbl1185.37013MR2520153
- [12] M. Barge, S. Štimac and R.F. Williams, Pure discrete spectrum in substitution tiling spaces. Discrete Contin. Dyn. Syst.33 (2013) 579–597. Zbl1291.37024MR2975125
- [13] V. Berthé, D. Frettlöh, and V. Sirvent, Selfdual substitutions in dimension one, European J. Combin.33 (2012) 981–1000. Zbl1252.68164MR2904970
- [14] V. Berthé and M. Rigo, Combinatorics, automata and number theory, Encyclopedia of Mathematics and its Applications, vol. 135. Cambridge University Press (2010). Zbl1197.68006MR2742574
- [15] V. Berthé, S. Ferenczi and L.Q. Zamboni, Interactions between dynamics, arithmetics and combinatorics: the good, the bad, and the ugly, Algebraic and topological dynamics, Contemp. Math., vol. 385. Amer. Math. Soc. Providence, RI (2005) 333–364. Zbl1156.37301MR2180244
- [16] V. Berthé, T. Jolivet and A. Siegel, Substitutive Arnoux-Rauzy sequences have pure discrete spectrum. Unif. Distrib. Theory7 (2012) 173–197. Zbl1313.37004MR2943167
- [17] V. Berthé, A. Lacasse, G. Paquin and X. Provençal, A study of Jacobi–Perron boundary words for the generation of discrete planes. Theoret. Comput. Sci.502 (2013) 118–142. Zbl1296.68113MR3101696
- [18] R. Bowen, Markov partitions are not smooth. Proc. Amer. Math. Soc.71 (1978) 130–132. Zbl0417.58011MR474415
- [19] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, revised ed., Lect. Notes Math., vol. 470. With a preface by David Ruelle, edited by Jean–René Chazottes. Springer-Verlag, Berlin (2008). Zbl1172.37001MR2423393
- [20] V. Canterini, Connectedness of geometric representation of substitutions of Pisot type. Bull. Belg. Math. Soc. Simon Stevin10 (2003) 77–89. Zbl1031.37015MR2032327
- [21] V. Canterini and A. Siegel, Geometric representation of substitutions of Pisot type. Trans. Amer. Math. Soc.353 (2001) 5121–5144. Zbl1142.37302MR1852097
- [22] J. Cassaigne and N. Chekhova, Fonctions de récurrence des suites d’Arnoux-Rauzy et réponse à une question de Morse et Hedlund. Ann. Inst. Fourier Grenoble56 (2006) 2249–2270. Zbl1138.68045MR2290780
- [23] J. Cassaigne, S. Ferenczi and A. Messaoudi, Weak mixing and eigenvalues for Arnoux-Rauzy sequences. Ann. Inst. Fourier58 (2008) 1983–2005. Zbl1151.37013MR2473626
- [24] J. Cassaigne, S. Ferenczi and L.Q. Zamboni, Imbalances in Arnoux-Rauzy sequences. Ann. Inst. Fourier50 (2000) 1265–1276. Zbl1004.37008MR1799745
- [25] H. Ei and S. Ito, Decomposition theorem on invertible substitutions. Osaka J. Math.35 (1998) 821–834. Zbl0924.20040MR1659624
- [26] T. Fernique, Multidimensional Sturmian sequences and generalized substitutions. Internat. J. Found. Comput. Sci.17 (2006) 575–599. Zbl1096.68125MR2234803
- [27] T. Fernique, Generation and recognition of digital planes using multi-dimensional continued fractions. Pattern Recognition42 (2009) 2229–2238. Zbl1176.68180MR2503454
- [28] J.-P. Gazeau and J.-L. Verger–Gaugry, Geometric study of the beta-integers for a Perron number and mathematical quasicrystals. J. Théor. Nombres Bordeaux16 (2004) 125–149. Zbl1075.11007MR2145576
- [29] P. Hubert and A. Messaoudi, Best simultaneous Diophantine approximations of Pisot numbers and Rauzy fractals. Acta Arith.124 (2006) 1–15. Zbl1116.28009MR2262136
- [30] S. Ito and M. Ohtsuki, Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms. Tokyo J. Math.16 (1993) 441–472. Zbl0805.11056MR1247666
- [31] S. Ito and M. Ohtsuki, Parallelogram tilings and Jacobi-Perron algorithm. Tokyo J. Math.17 (1994) 33–58. Zbl0805.52011MR1279568
- [32] S. Ito and H. Rao, Atomic surfaces, tilings and coincidence. I. Irreducible case. Israel J. Math. 153 (2006) 129–155. Zbl1143.37013MR2254640
- [33] D. Lind and B. Marcus, An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge (1995). Zbl1106.37301MR1369092
- [34] M. Lothaire, Combinatorics on words, Cambridge Mathematical Library, Cambridge University Press, Cambridge (1997). Zbl0874.20040MR1475463
- [35] A. Messaoudi, Frontière du fractal de Rauzy et système de numération complexe. Acta Arith.95 (2000) 195–224. Zbl0968.28005MR1793161
- [36] M. Morse and G.A. Hedlund, Symbolic dynamics II. Sturmian trajectories. Amer. J. Math. 62 (1940) 1–42. Zbl0022.34003MR745JFM66.0188.03
- [37] B. Praggastis, Numeration systems and Markov partitions from self-similar tilings. Trans. Amer. Math. Soc.351 (1999) 3315–3349. Zbl0984.11008MR1615950
- [38] N.P. Fogg, Substitutions in dynamics, arithmetics and combinatorics, Lect. Notes Math., vol. 1794. Springer-Verlag, Berlin (2002). Zbl1014.11015MR1970385
- [39] M. Queffélec, Substitution dynamical systems-spectral analysis, second edition, Lect. Notes Math., vol. 1294. Springer-Verlag, Berlin (2010). Zbl1225.11001MR2590264
- [40] G. Rauzy, Nombres algébriques et substitutions. Bull. Soc. Math. France110 (1982) 147–178. Zbl0522.10032MR667748
- [41] J.-P. Reveillès, Géométrie discrète, calculs en nombres entiers et algorithmes, Ph.D. thesis. Université Louis Pasteur, Strasbourg (1991). Zbl1079.51513
- [42] A. Siegel, Représentations géométrique, combinatoire et arithmétique des systèmes substitutifs de type pisot, Ph.D. thesis. Université de la Méditerranée (2000).
- [43] A. Siegel and J. Thuswaldner, Topological properties of Rauzy fractal. Mém. Soc. Math. Fr. To appear (2010). Zbl1229.28021MR2721985
- [44] B. Tan, Z.-X. Wen and Y. Zhang, The structure of invertible substitutions on a three-letter alphabet. Adv. in Appl. Math.32 (2004) 736–753. Zbl1082.68092MR2053843
- [45] W. Thurston, Groups, tilings, and finite state automata. AMS Colloquium lecture notes. Unpublished manuscript (1989).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.