Connectedness of fractals associated with Arnoux–Rauzy substitutions

Valérie Berthé; Timo Jolivet; Anne Siegel

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2014)

  • Volume: 48, Issue: 3, page 249-266
  • ISSN: 0988-3754

Abstract

top
Rauzy fractals are compact sets with fractal boundary that can be associated with any unimodular Pisot irreducible substitution. These fractals can be defined as the Hausdorff limit of a sequence of compact sets, where each set is a renormalized projection of a finite union of faces of unit cubes. We exploit this combinatorial definition to prove the connectedness of the Rauzy fractal associated with any finite product of three-letter Arnoux–Rauzy substitutions.

How to cite

top

Berthé, Valérie, Jolivet, Timo, and Siegel, Anne. "Connectedness of fractals associated with Arnoux–Rauzy substitutions." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 48.3 (2014): 249-266. <http://eudml.org/doc/273028>.

@article{Berthé2014,
abstract = {Rauzy fractals are compact sets with fractal boundary that can be associated with any unimodular Pisot irreducible substitution. These fractals can be defined as the Hausdorff limit of a sequence of compact sets, where each set is a renormalized projection of a finite union of faces of unit cubes. We exploit this combinatorial definition to prove the connectedness of the Rauzy fractal associated with any finite product of three-letter Arnoux–Rauzy substitutions.},
author = {Berthé, Valérie, Jolivet, Timo, Siegel, Anne},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {Rauzy fractals; Arnoux–Rauzy substitutions; discrete planes; Rauzy fractal; three-letter substitutions; unimodular Pisot irreducible substitution; combinatorics on words},
language = {eng},
number = {3},
pages = {249-266},
publisher = {EDP-Sciences},
title = {Connectedness of fractals associated with Arnoux–Rauzy substitutions},
url = {http://eudml.org/doc/273028},
volume = {48},
year = {2014},
}

TY - JOUR
AU - Berthé, Valérie
AU - Jolivet, Timo
AU - Siegel, Anne
TI - Connectedness of fractals associated with Arnoux–Rauzy substitutions
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 3
SP - 249
EP - 266
AB - Rauzy fractals are compact sets with fractal boundary that can be associated with any unimodular Pisot irreducible substitution. These fractals can be defined as the Hausdorff limit of a sequence of compact sets, where each set is a renormalized projection of a finite union of faces of unit cubes. We exploit this combinatorial definition to prove the connectedness of the Rauzy fractal associated with any finite product of three-letter Arnoux–Rauzy substitutions.
LA - eng
KW - Rauzy fractals; Arnoux–Rauzy substitutions; discrete planes; Rauzy fractal; three-letter substitutions; unimodular Pisot irreducible substitution; combinatorics on words
UR - http://eudml.org/doc/273028
ER -

References

top
  1. [1] B. Adamczewski, C. Frougny, A. Siegel and W. Steiner, Rational numbers with purely periodic β-expansion. Bull. London Math. Soc.42 (2010) 538–552. Zbl1211.11010MR2651949
  2. [2] R.L. Adler, Symbolic dynamics and Markov partitions. Bull. Amer. Math. Soc. (N.S.) 35 (1998) 1–56. Zbl0892.58019MR1477538
  3. [3] S. Akiyama and N. Gjini, Connectedness of number theoretic tilings. Discrete Math. Theor. Comput. Sci. 7 (2005) 269–312 (electronic). Zbl1162.11366MR2183177
  4. [4] S. Akiyama, G. Barat, V. Berthé and A. Siegel, Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions. Monatsh. Math.155 (2008) 377–419. Zbl1190.11005MR2461585
  5. [5] P. Arnoux and G. Rauzy, Représentation géométrique de suites de complexit*error*é2n + 1. Bull. Soc. Math. France119 (1991) 199–215. Zbl0789.28011MR1116845
  6. [6] P. Arnoux, V. Berthé, T. Fernique and D. Jamet, Functional stepped surfaces, flips, and generalized substitutions. Theoret. Comput. Sci.380 (2007) 251–265. Zbl1119.68136MR2330996
  7. [7] P. Arnoux, V. Berthé and S. Ito, Discrete planes, Z2-actions, Jacobi-Perron algorithm and substitutions. Ann. Inst. Fourier 52 (2002) 305–349. Zbl1017.11006MR1906478
  8. [8] P. Arnoux, V. Berthé and A. Siegel, Two-dimensional iterated morphisms and discrete planes. Theoret. Comput. Sci.319 (2004) 145–176. Zbl1068.37004MR2074952
  9. [9] P. Arnoux and S. Ito, Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon Stevin8 (2001) 181–207. Zbl1007.37001MR1838930
  10. [10] M. Barge and J. Kwapisz, Geometric theory of unimodular Pisot substitutions. Amer. J. Math.128 (2006) 1219–1282. Zbl1152.37011MR2262174
  11. [11] M. Barge, B. Diamond and R. Swanson, The branch locus for one-dimensional Pisot tiling spaces. Fund. Math.204 (2009) 215–240. Zbl1185.37013MR2520153
  12. [12] M. Barge, S. Štimac and R.F. Williams, Pure discrete spectrum in substitution tiling spaces. Discrete Contin. Dyn. Syst.33 (2013) 579–597. Zbl1291.37024MR2975125
  13. [13] V. Berthé, D. Frettlöh, and V. Sirvent, Selfdual substitutions in dimension one, European J. Combin.33 (2012) 981–1000. Zbl1252.68164MR2904970
  14. [14] V. Berthé and M. Rigo, Combinatorics, automata and number theory, Encyclopedia of Mathematics and its Applications, vol. 135. Cambridge University Press (2010). Zbl1197.68006MR2742574
  15. [15] V. Berthé, S. Ferenczi and L.Q. Zamboni, Interactions between dynamics, arithmetics and combinatorics: the good, the bad, and the ugly, Algebraic and topological dynamics, Contemp. Math., vol. 385. Amer. Math. Soc. Providence, RI (2005) 333–364. Zbl1156.37301MR2180244
  16. [16] V. Berthé, T. Jolivet and A. Siegel, Substitutive Arnoux-Rauzy sequences have pure discrete spectrum. Unif. Distrib. Theory7 (2012) 173–197. Zbl1313.37004MR2943167
  17. [17] V. Berthé, A. Lacasse, G. Paquin and X. Provençal, A study of Jacobi–Perron boundary words for the generation of discrete planes. Theoret. Comput. Sci.502 (2013) 118–142. Zbl1296.68113MR3101696
  18. [18] R. Bowen, Markov partitions are not smooth. Proc. Amer. Math. Soc.71 (1978) 130–132. Zbl0417.58011MR474415
  19. [19] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, revised ed., Lect. Notes Math., vol. 470. With a preface by David Ruelle, edited by Jean–René Chazottes. Springer-Verlag, Berlin (2008). Zbl1172.37001MR2423393
  20. [20] V. Canterini, Connectedness of geometric representation of substitutions of Pisot type. Bull. Belg. Math. Soc. Simon Stevin10 (2003) 77–89. Zbl1031.37015MR2032327
  21. [21] V. Canterini and A. Siegel, Geometric representation of substitutions of Pisot type. Trans. Amer. Math. Soc.353 (2001) 5121–5144. Zbl1142.37302MR1852097
  22. [22] J. Cassaigne and N. Chekhova, Fonctions de récurrence des suites d’Arnoux-Rauzy et réponse à une question de Morse et Hedlund. Ann. Inst. Fourier Grenoble56 (2006) 2249–2270. Zbl1138.68045MR2290780
  23. [23] J. Cassaigne, S. Ferenczi and A. Messaoudi, Weak mixing and eigenvalues for Arnoux-Rauzy sequences. Ann. Inst. Fourier58 (2008) 1983–2005. Zbl1151.37013MR2473626
  24. [24] J. Cassaigne, S. Ferenczi and L.Q. Zamboni, Imbalances in Arnoux-Rauzy sequences. Ann. Inst. Fourier50 (2000) 1265–1276. Zbl1004.37008MR1799745
  25. [25] H. Ei and S. Ito, Decomposition theorem on invertible substitutions. Osaka J. Math.35 (1998) 821–834. Zbl0924.20040MR1659624
  26. [26] T. Fernique, Multidimensional Sturmian sequences and generalized substitutions. Internat. J. Found. Comput. Sci.17 (2006) 575–599. Zbl1096.68125MR2234803
  27. [27] T. Fernique, Generation and recognition of digital planes using multi-dimensional continued fractions. Pattern Recognition42 (2009) 2229–2238. Zbl1176.68180MR2503454
  28. [28] J.-P. Gazeau and J.-L. Verger–Gaugry, Geometric study of the beta-integers for a Perron number and mathematical quasicrystals. J. Théor. Nombres Bordeaux16 (2004) 125–149. Zbl1075.11007MR2145576
  29. [29] P. Hubert and A. Messaoudi, Best simultaneous Diophantine approximations of Pisot numbers and Rauzy fractals. Acta Arith.124 (2006) 1–15. Zbl1116.28009MR2262136
  30. [30] S. Ito and M. Ohtsuki, Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms. Tokyo J. Math.16 (1993) 441–472. Zbl0805.11056MR1247666
  31. [31] S. Ito and M. Ohtsuki, Parallelogram tilings and Jacobi-Perron algorithm. Tokyo J. Math.17 (1994) 33–58. Zbl0805.52011MR1279568
  32. [32] S. Ito and H. Rao, Atomic surfaces, tilings and coincidence. I. Irreducible case. Israel J. Math. 153 (2006) 129–155. Zbl1143.37013MR2254640
  33. [33] D. Lind and B. Marcus, An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge (1995). Zbl1106.37301MR1369092
  34. [34] M. Lothaire, Combinatorics on words, Cambridge Mathematical Library, Cambridge University Press, Cambridge (1997). Zbl0874.20040MR1475463
  35. [35] A. Messaoudi, Frontière du fractal de Rauzy et système de numération complexe. Acta Arith.95 (2000) 195–224. Zbl0968.28005MR1793161
  36. [36] M. Morse and G.A. Hedlund, Symbolic dynamics II. Sturmian trajectories. Amer. J. Math. 62 (1940) 1–42. Zbl0022.34003MR745JFM66.0188.03
  37. [37] B. Praggastis, Numeration systems and Markov partitions from self-similar tilings. Trans. Amer. Math. Soc.351 (1999) 3315–3349. Zbl0984.11008MR1615950
  38. [38] N.P. Fogg, Substitutions in dynamics, arithmetics and combinatorics, Lect. Notes Math., vol. 1794. Springer-Verlag, Berlin (2002). Zbl1014.11015MR1970385
  39. [39] M. Queffélec, Substitution dynamical systems-spectral analysis, second edition, Lect. Notes Math., vol. 1294. Springer-Verlag, Berlin (2010). Zbl1225.11001MR2590264
  40. [40] G. Rauzy, Nombres algébriques et substitutions. Bull. Soc. Math. France110 (1982) 147–178. Zbl0522.10032MR667748
  41. [41] J.-P. Reveillès, Géométrie discrète, calculs en nombres entiers et algorithmes, Ph.D. thesis. Université Louis Pasteur, Strasbourg (1991). Zbl1079.51513
  42. [42] A. Siegel, Représentations géométrique, combinatoire et arithmétique des systèmes substitutifs de type pisot, Ph.D. thesis. Université de la Méditerranée (2000). 
  43. [43] A. Siegel and J. Thuswaldner, Topological properties of Rauzy fractal. Mém. Soc. Math. Fr. To appear (2010). Zbl1229.28021MR2721985
  44. [44] B. Tan, Z.-X. Wen and Y. Zhang, The structure of invertible substitutions on a three-letter alphabet. Adv. in Appl. Math.32 (2004) 736–753. Zbl1082.68092MR2053843
  45. [45] W. Thurston, Groups, tilings, and finite state automata. AMS Colloquium lecture notes. Unpublished manuscript (1989). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.