A penalty algorithm for the spectral element discretization of the Stokes problem
Christine Bernardi; Adel Blouza; Nejmeddine Chorfi; Nizar Kharrat
- Volume: 45, Issue: 2, page 201-216
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBernardi, Christine, et al. "A penalty algorithm for the spectral element discretization of the Stokes problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 45.2 (2011): 201-216. <http://eudml.org/doc/273140>.
@article{Bernardi2011,
abstract = {The penalty method when applied to the Stokes problem provides a very efficient algorithm for solving any discretization of this problem since it gives rise to a system of two equations where the unknowns are uncoupled. For a spectral or spectral element discretization of the Stokes problem, we prove a posteriori estimates that allow us to optimize the penalty parameter as a function of the discretization parameter. Numerical experiments confirm the interest of this technique.},
author = {Bernardi, Christine, Blouza, Adel, Chorfi, Nejmeddine, Kharrat, Nizar},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Stokes problem; spectral elements; penalty algorithm},
language = {eng},
number = {2},
pages = {201-216},
publisher = {EDP-Sciences},
title = {A penalty algorithm for the spectral element discretization of the Stokes problem},
url = {http://eudml.org/doc/273140},
volume = {45},
year = {2011},
}
TY - JOUR
AU - Bernardi, Christine
AU - Blouza, Adel
AU - Chorfi, Nejmeddine
AU - Kharrat, Nizar
TI - A penalty algorithm for the spectral element discretization of the Stokes problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2011
PB - EDP-Sciences
VL - 45
IS - 2
SP - 201
EP - 216
AB - The penalty method when applied to the Stokes problem provides a very efficient algorithm for solving any discretization of this problem since it gives rise to a system of two equations where the unknowns are uncoupled. For a spectral or spectral element discretization of the Stokes problem, we prove a posteriori estimates that allow us to optimize the penalty parameter as a function of the discretization parameter. Numerical experiments confirm the interest of this technique.
LA - eng
KW - Stokes problem; spectral elements; penalty algorithm
UR - http://eudml.org/doc/273140
ER -
References
top- [1] F. Ben Belgacem, C. Bernardi, N. Chorfi and Y. Maday, Inf-sup conditions for the mortar spectral element discretization of the Stokes problem. Numer. Math.85 (2000) 257–281. Zbl0955.65088MR1754721
- [2] M. Bercovier, Régularisation duale des problèmes variationnels mixtes : application aux éléments finis mixtes et extension à quelques problèmes non linéaires. Thèse de Doctorat d'État, Université de Rouen, France (1976).
- [3] M. Bercovier, Perturbation of mixed variational problems. Application to mixed finite element methods. RAIRO Anal. Numér. 12 (1978) 211–236. Zbl0428.65059MR509973
- [4] C. Bernardi, Indicateurs d'erreur en h – N version des éléments spectraux. RAIRO Modél. Math. Anal. Numér.30 (1996) 1–38. Zbl0843.65077MR1378610
- [5] C. Bernardi and Y. Maday, Polynomial approximation of some singular functions. Appl. Anal.42 (1991) 1–32. Zbl0701.41009MR1112643
- [6] C. Bernardi and Y. Maday, Spectral Methods, in Handbook of Numerical Analysis V, P.G. Ciarlet and J.-L. Lions Eds., North-Holland (1997) 209–485. Zbl0689.65001MR1470226
- [7] C. Bernardi and Y. Maday, Uniform inf-sup conditions for the spectral discretization of the Stokes problem. Math. Mod. Meth. Appl. Sci.9 (1999) 395–414. Zbl0944.76058MR1686546
- [8] C. Bernardi, B. Métivet and R. Verfürth, Analyse numérique d'indicateurs d'erreur, in Maillage et adaptation, P.-L. George Ed., Hermès (2001) 251–278.
- [9] C. Bernardi, V. Girault and F. Hecht, A posteriori analysis of a penalty method and application to the Stokes problem. Math. Mod. Meth. Appl. Sci.13 (2003) 1599–1628. Zbl1050.65099MR2024465
- [10] C. Bernardi, Y. Maday and F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques, Mathématiques & Applications 45. Springer-Verlag (2004). Zbl1063.65119MR2068204
- [11] G.F. Carey and R. Krishnan, Penalty approximation of Stokes flow. Comput. Meth. Appl. Mech. Eng.35 (1982) 169–206. Zbl0478.76040MR682127
- [12] G.F. Carey and R. Krishnan, Penalty finite element method for the Navier–Stokes equations. Comput. Meth. Appl. Mech. Eng.42 (1984) 183–224. Zbl0518.76023MR737950
- [13] G.F. Carey and R. Krishnan, Convergence of iterative methods in penalty finite element approximation of the Navier–Stokes equations. Comput. Meth. Appl. Mech. Eng.60 (1987) 1–29. Zbl0593.76037MR872571
- [14] V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms . Springer-Verlag (1986). Zbl0585.65077MR851383
- [15] Y. Maday, D. Meiron, A.T. Patera and E.M. Rønquist, Analysis of iterative methods for the steady and unsteady Stokes problem: Application to spectral element discretizations. SIAM J. Sci. Comput.14 (1993) 310–337. Zbl0769.76047MR1204233
- [16] D.S. Malkus and E.T. Olsen, Incompressible finite elements which fail the discrete LBB condition, in Penalty-Finite Element Methods in Mechanics, Phoenix, Am. Soc. Mech. Eng., New York (1982) 33–50. Zbl0503.76049MR686616
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.