Indicateurs d’erreur en h - N version des éléments spectraux

Christine Bernardi

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1996)

  • Volume: 30, Issue: 1, page 1-38
  • ISSN: 0764-583X

How to cite

top

Bernardi, Christine. "Indicateurs d’erreur en $h-N$ version des éléments spectraux." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.1 (1996): 1-38. <http://eudml.org/doc/193797>.

@article{Bernardi1996,
author = {Bernardi, Christine},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = { version; spectral element method; Poisson equation; error bound},
language = {fre},
number = {1},
pages = {1-38},
publisher = {Dunod},
title = {Indicateurs d’erreur en $h-N$ version des éléments spectraux},
url = {http://eudml.org/doc/193797},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Bernardi, Christine
TI - Indicateurs d’erreur en $h-N$ version des éléments spectraux
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 1
SP - 1
EP - 38
LA - fre
KW - version; spectral element method; Poisson equation; error bound
UR - http://eudml.org/doc/193797
ER -

References

top
  1. [1] M. AINSWORTH, J. T. ODEN, 1992, A procedure for a posteriori error estimation for h - p finite element methods, Comp. Methods in Applied Mech. and Eng., 101, pp. 73-96. Zbl0778.73060MR1195579
  2. [2] I. BABUŠKA, W. C. RHEINBOLDT, 1978, A posteriori error estimates for the finite element method, Int J. Numer. Methods Eng., 12, pp. 1597-1615. Zbl0396.65068
  3. [3] F. BEN BELGACEM, 1993, Thèse, Université Pierre et Marie Curie. 
  4. [4] C. BERNARDI, M. DAUGE, Y. MADAY, 1992, Polynomials in weighted Sobolev spaces : Basics and trace liftings, Rapport Interne 92039, Laboratoire d'Analyse Numérique de l'Université Pierre et Marie Curie, Paris. Zbl0755.65103
  5. [5] C. BERNARDI, Y. MADAY, 1991, Polynomial approximation of some singular functions, Applicable Analysis : an International Journal, 42, pp. 1-32. Zbl0701.41009MR1112643
  6. [6] C. BERNARDI, Y. MADAY, 1996, Spectral Methods, à paraître dans le Handbook of Numerical Analysis, Vol. V, édité par P. G, Ciarlet et J.-L. Lions, North-Holland. MR1470226
  7. [7] C. BERNARDI, Y. MADAY, 1994, Mesh adaptivity in finite elements by the mortar method, Rapport Interne 94029, Laboratoire d'Analyse Numérique de l'Université Pierre et Marie Curie, Paris. 
  8. [8] C. BERNARDI, Y. MADAY, A. T. PATERA, 1994, A new nonconforming approach to domain decomposition : the mortar element method, Collège de France Seminar, XI, édité par H. Brezis et J.-L. Lions, Pitman, pp. 13-51. Zbl0797.65094MR1268898
  9. [9] C. BERNARDI, B. MÉTIVET, R. VERFÜRTH, 1993, Analyse numérique d'indicateurs d'erreur, Rapport Interne 93025, Laboratoire d'Analyse Numérique de l'Université Pierre et Marie Curie, Paris. 
  10. [10] P. G. CIARLET, 1991, Basic Error Estimates for Elliptic Problems, Handbook of Numerical Analysis, Vol. II, édité par P. G. Ciarlet et J.-L. Lions, North-Holland. Zbl0875.65086MR1115235
  11. [11] P. GRISVARD, 1985, Elliptic Problems in Nonsmooth Domains, Pitman. Zbl0695.35060MR775683
  12. [12] V. A. KONDRATIEV, 1967, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskovkogo Mat. Obschetsva, 16, pp. 209-212 (et Trans. Moscow Mat. Soc., pp. 227-313). Zbl0194.13405MR226187
  13. [13] J. T. ODEN, L. DEMKOWICZ, W. RACHOWICZ, T. A. WESTERMANN, 1989, Toward a universal h - p adaptive finite element strategy, Part II : a posteriori error estimation, Comp.Methods Appl. Mech. and Eng., 77, pp. 113-180. Zbl0723.73075MR1030147
  14. [14] J. POUSIN, J. RAPPAZ, 1992, Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems, Rapport Interne École Polytechnique Fédérale de Lausanne. Zbl0822.65034
  15. [15] R. VERFÜRTH, 1994, A posteriori error estimation and adaptive mesh-refinement techniques, J. Comput. Appl. Math., 50, pp. 67-83. Zbl0811.65089MR1284252
  16. [16] R. VERFÜRTH, 1993, A posteriori error estimators and adaptive mesh-refinement techniques for the Navier-Stokes equations, dans Incompressible Computational Fluid Dynamics, Trends and Advances, édité par M. D. Gunzburger et R. A. Nicolaides, Cambridge University Press, pp. 447-477. 
  17. [17] R. VERFÜRTH, 1994, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations, Math. Comput. 62, pp. 445-475. Zbl0799.65112MR1213837
  18. [18] R. VERFÜRTH, 1993, A review of a posteriori error estimation and adaptive mesh-refinement techniques, Rapport Interne, Institut für Angewandte Mathematik, Universität Zürich. Zbl1189.76394

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.