Numerical analysis of history-dependent quasivariational inequalities with applications in contact mechanics
Kamran Kazmi; Mikael Barboteu; Weimin Han; Mircea Sofonea
- Volume: 48, Issue: 3, page 919-942
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topKazmi, Kamran, et al. "Numerical analysis of history-dependent quasivariational inequalities with applications in contact mechanics." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.3 (2014): 919-942. <http://eudml.org/doc/273246>.
@article{Kazmi2014,
abstract = {A new class of history-dependent quasivariational inequalities was recently studied in [M. Sofonea and A. Matei, History-dependent quasivariational inequalities arising in contact mechanics. Eur. J. Appl. Math. 22 (2011) 471–491]. Existence, uniqueness and regularity results were proved and used in the study of several mathematical models which describe the contact between a deformable body and an obstacle. The aim of this paper is to provide numerical analysis of the quasivariational inequalities introduced in the aforementioned paper. To this end we introduce temporally semi-discrete and fully discrete schemes for the numerical approximation of the inequalities, show their unique solvability, and derive error estimates. We then apply these results to a quasistatic frictional contact problem in which the material’s behavior is modeled with a viscoelastic constitutive law, the contact is bilateral, and friction is described with a slip-rate version of Coulomb’s law. We discuss implementation of the corresponding fully-discrete scheme and present numerical simulation results on a two-dimensional example.},
author = {Kazmi, Kamran, Barboteu, Mikael, Han, Weimin, Sofonea, Mircea},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {quasivariational inequality; numerical analysis; finite element method; error estimates; quasistatic frictional contact problem; viscoelastic constitutive law; Coulomb’s law; numerical simulations; Coulomb's law, numerical simulations},
language = {eng},
number = {3},
pages = {919-942},
publisher = {EDP-Sciences},
title = {Numerical analysis of history-dependent quasivariational inequalities with applications in contact mechanics},
url = {http://eudml.org/doc/273246},
volume = {48},
year = {2014},
}
TY - JOUR
AU - Kazmi, Kamran
AU - Barboteu, Mikael
AU - Han, Weimin
AU - Sofonea, Mircea
TI - Numerical analysis of history-dependent quasivariational inequalities with applications in contact mechanics
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 3
SP - 919
EP - 942
AB - A new class of history-dependent quasivariational inequalities was recently studied in [M. Sofonea and A. Matei, History-dependent quasivariational inequalities arising in contact mechanics. Eur. J. Appl. Math. 22 (2011) 471–491]. Existence, uniqueness and regularity results were proved and used in the study of several mathematical models which describe the contact between a deformable body and an obstacle. The aim of this paper is to provide numerical analysis of the quasivariational inequalities introduced in the aforementioned paper. To this end we introduce temporally semi-discrete and fully discrete schemes for the numerical approximation of the inequalities, show their unique solvability, and derive error estimates. We then apply these results to a quasistatic frictional contact problem in which the material’s behavior is modeled with a viscoelastic constitutive law, the contact is bilateral, and friction is described with a slip-rate version of Coulomb’s law. We discuss implementation of the corresponding fully-discrete scheme and present numerical simulation results on a two-dimensional example.
LA - eng
KW - quasivariational inequality; numerical analysis; finite element method; error estimates; quasistatic frictional contact problem; viscoelastic constitutive law; Coulomb’s law; numerical simulations; Coulomb's law, numerical simulations
UR - http://eudml.org/doc/273246
ER -
References
top- [1] P. Alart and A. Curnier, A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Eng.92 (1991) 353–375. Zbl0825.76353MR1141048
- [2] C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems. John Wiley, Chichester (1984). Zbl0551.49007MR745619
- [3] M. Barboteu and M. Sofonea, Modelling and analysis of the unilateral contact of a piezoelectric body with a conductive support. J. Math. Anal. Appl.358 (2009) 110–124. Zbl1168.74039MR2527585
- [4] M. Barboteu and M. Sofonea, Analysis and numerical approach of a piezoelectric contact problem. Annals of the Academy of Romanian Scientists, Series on Mathematics and its Applications 1 (2009) 7–31. Zbl05819255MR2660410
- [5] D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd edn. Cambridge University Press, Cambridge (2007). Zbl1118.65117
- [6] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edn. Springer-Verlag, New York (2008). Zbl0804.65101MR2373954
- [7] H. Brezis, Equations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier18 (1968) 115–175. Zbl0169.18602MR270222
- [8] P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis, vol. II, edited by P.G. Ciarlet and J.-L. Lions. North-Holland, Amsterdam (1991) 17–351. Zbl0875.65086MR1115237
- [9] G. Duvaut and J.L. Lions, Inequalities in Mechanics and Physics. Springer-Verlag, Berlin (1976). Zbl0331.35002MR521262
- [10] R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer-Verlag, New York (1984). Zbl1139.65050
- [11] C. Eck, J. Jarušek and M. Krbeč, Unilateral Contact Problems: Variational Methods and Existence Theorems, vol. 270, Pure Appl. Math. Chapman/CRC Press, New York (2005). Zbl1079.74003
- [12] W. Han and B.D. Reddy, Computational plasticity: the variational basis and numerical analysis. Comput. Mech. Adv.2 (1995) 283–400. Zbl0847.73078MR1361227
- [13] W. Han and B.D. Reddy, Plasticity: Mathematical Theory and Numerical Analysis, 2nd edn. Springer-Verlag, New York (2013). Zbl1258.74002MR3012574
- [14] W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. In vol. 30, Stud. Adv. Math. American Mathematical Society, Providence, RI-International Press, Sommerville, MA (2002). Zbl1013.74001MR1935666
- [15] J. Haslinger, M. Miettinen and P.D. Panagiotopoulos, Finite Element Method for Hemivariational Inequalities. Theory, Methods Appl. Kluwer Academic Publishers, Boston, Dordrecht, London (1999). Zbl0949.65069MR1784436
- [16] I. Hlaváček, J. Haslinger, J. Necǎs and J. Lovíšek, Solution of Variational Inequalities in Mechanics. Springer-Verlag, New York (1988). Zbl0654.73019MR952855
- [17] H.B. Khenous, P. Laborde, and Y. Renard, On the discretization of contact problems in elastodynamics. Lect. Notes Appl. Comput. Mech.27 (2006) 31–38. Zbl1194.74417
- [18] H.B. Khenous, J. Pommier and Y. Renard, Hybrid discretization of the Signorini problem with Coulomb friction. Theoretical aspects and comparison of some numerical solvers. Appl. Numer. Math. 56 (2006) 163–192. Zbl1089.74046MR2200937
- [19] N. Kikuchi and J.T. Oden, Theory of variational inequalities with applications to problems of flow through porous media. Int. J. Engng. Sci.18 (1980) 1173–1284. Zbl0444.76069MR659007
- [20] N. Kikuchi and T.J. Oden, Contact Problems in Elasticity. SIAM, Philadelphia (1988). Zbl0685.73002MR961258
- [21] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications. In vol. 31, Classics Appl. Math. SIAM, Philadelphia (2000). Zbl0988.49003MR1786735
- [22] T. Laursen, Computational contact and impact mechanics. Springer, Berlin (2002). Zbl0996.74003MR1902698
- [23] J.A.C. Martins and M.D.P. Monteiro Marques, eds., Contact Mechanics. Kluwer, Dordrecht (2002). MR1968651
- [24] E.S. Mistakidis and P.D. Panagiotopulos, Numerical treatment of problems involving nonmonotone boundary or stress-strain laws. Comput. Structures64 (1997) 553–565. Zbl0918.73363
- [25] E.S. Mistakidis and P.D. Panagiotopulos, The search for substationary points in the unilateral contact problems with nonmonotone friction. Math. Comput. Modelling28 (1998) 341–358. Zbl1126.74481MR1648757
- [26] P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Birkhäuser, Boston, 1985. Zbl0579.73014MR896909
- [27] M. Raous, M. Jean and J.J. Moreau, Contact Mechanics. Plenum Press, New York (1995).
- [28] M. Shillor, ed., Recent advances in contact mechanics, Special issue of Math. Comput. Modelling 28 (4–8) (1998). Zbl1126.74480MR1616376
- [29] M. Shillor, M. Sofonea and J.J. Telega, Models and Analysis of Quasistatic Contact. Variational Methods. In vol. 655, Lect. Notes Phys. Springer, Berlin (2004). Zbl1069.74001
- [30] M. Sofonea, C. Avramescu and A. Matei, A fixed point result with applications in the study of viscoplastic frictionless contact problems. Commun. Pure Appl. Anal.7 (2008) 645–658. Zbl1171.47047MR2379447
- [31] M. Sofonea, W. Han and M. Shillor, Analysis and Approximation of Contact Problems with Adhesion or Damage. Chapman & Hall/CRC, New York (2006). Zbl1089.74004MR2183435
- [32] M. Sofonea and A. Matei, Variational Inequalities with Applications. A Study of Antiplane Frictional Contact Problems. vol. 18, Adv. Mech. Math. Springer, New York (2009). Zbl1195.49002MR2488869
- [33] M. Sofonea and A. Matei, History-dependent quasivariational inequalities arising in contact mechanics. Eur. J. Appl. Math.22 (2011) 471–491. Zbl1226.49012MR2834015
- [34] C.H. Scholz, The Mechanics of Earthquakes and Faulting. Cambridge University Press (1990).
- [35] M.A. Tzaferopoulos, E.S. Mistakidis, C.D. Bisbos, and P.D. Panagiotopulos, Comparison of two methods for the solution of a class of nonconvex energy problems using convex minimization algorithms. Comput. Struct.57 (1995) 959–971. Zbl0924.73322MR1352307
- [36] P. Wriggers and U. Nackenhorst, eds., Analysis and Simulation of Contact Problems. In vol. 27, Lect. Notes Appl. Comput. Mech. Springer, Berlin (2006).
- [37] P. Wriggers, Computational Contact Mechanics. Wiley, Chichester (2002).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.