Error estimates for Galerkin reduced-order models of the semi-discrete wave equation

D. Amsallem; U. Hetmaniuk

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2014)

  • Volume: 48, Issue: 1, page 135-163
  • ISSN: 0764-583X

Abstract

top
Galerkin reduced-order models for the semi-discrete wave equation, that preserve the second-order structure, are studied. Error bounds for the full state variables are derived in the continuous setting (when the whole trajectory is known) and in the discrete setting when the Newmark average-acceleration scheme is used on the second-order semi-discrete equation. When the approximating subspace is constructed using the proper orthogonal decomposition, the error estimates are proportional to the sums of the neglected singular values. Numerical experiments illustrate the theoretical results.

How to cite

top

Amsallem, D., and Hetmaniuk, U.. "Error estimates for Galerkin reduced-order models of the semi-discrete wave equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.1 (2014): 135-163. <http://eudml.org/doc/273305>.

@article{Amsallem2014,
abstract = {Galerkin reduced-order models for the semi-discrete wave equation, that preserve the second-order structure, are studied. Error bounds for the full state variables are derived in the continuous setting (when the whole trajectory is known) and in the discrete setting when the Newmark average-acceleration scheme is used on the second-order semi-discrete equation. When the approximating subspace is constructed using the proper orthogonal decomposition, the error estimates are proportional to the sums of the neglected singular values. Numerical experiments illustrate the theoretical results.},
author = {Amsallem, D., Hetmaniuk, U.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {model order reduction; proper orthogonal decomposition; wave equation; Galerkin reduced-order models; Newmark schemes; second-order structure preservation; convergence acceleration; semidiscretization; error estimates; numerical experiments},
language = {eng},
number = {1},
pages = {135-163},
publisher = {EDP-Sciences},
title = {Error estimates for Galerkin reduced-order models of the semi-discrete wave equation},
url = {http://eudml.org/doc/273305},
volume = {48},
year = {2014},
}

TY - JOUR
AU - Amsallem, D.
AU - Hetmaniuk, U.
TI - Error estimates for Galerkin reduced-order models of the semi-discrete wave equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 1
SP - 135
EP - 163
AB - Galerkin reduced-order models for the semi-discrete wave equation, that preserve the second-order structure, are studied. Error bounds for the full state variables are derived in the continuous setting (when the whole trajectory is known) and in the discrete setting when the Newmark average-acceleration scheme is used on the second-order semi-discrete equation. When the approximating subspace is constructed using the proper orthogonal decomposition, the error estimates are proportional to the sums of the neglected singular values. Numerical experiments illustrate the theoretical results.
LA - eng
KW - model order reduction; proper orthogonal decomposition; wave equation; Galerkin reduced-order models; Newmark schemes; second-order structure preservation; convergence acceleration; semidiscretization; error estimates; numerical experiments
UR - http://eudml.org/doc/273305
ER -

References

top
  1. [1] D. Amsallem and C. Farhat, An interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J.46 (2008) 1803–1813. 
  2. [2] D. Amsallem, J. Cortial, K. Carlberg and C. Farhat, A method for interpolating on manifolds structural dynamics reduced-order models. Int. J. Numer. Methods Eng.80 (2009) 1241–1258. Zbl1176.74077
  3. [3] D. Amsallem, J. Cortial and C. Farhat, Toward real-time computational-fluid-dynamics-based aeroelastic computations using a database of reduced-order information. AIAA J.48 (2010) 2029–2037. 
  4. [4] D. Amsallem and J. Roychowdhury, ModSpec: An open, flexible specification framework for multi-domain device modelling. 2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (2011) 367–374. 
  5. [5] D. Amsallem and C. Farhat, On the stability of linearized reduced-order models: descriptor vs non-descriptor form. 42nd AIAA Fluid Dynamics Conference and Exhibit (2012) 25–28 New Orleans, LA (2012). 
  6. [6] A. Antoulas, Approximation of large-scale dynamical systems. SIAM, Philadelphia (2005). Zbl1158.93001MR2155615
  7. [7] C. Beattie and S. Gugercin, Krylov-based model reduction of second-order systems with proportional damping, in Proc. 44th CDC/ECC (2005) 2278–2283. 
  8. [8] C. Beattie and S. Gugercin, Interpolatory projection methods for structure-preserving model reduction. Systems Control Lett.58 (2009) 225–232. Zbl1159.93317MR2494198
  9. [9] T. Bui-Thanh, M. Damodoran and K. Willcox, Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition. AIAA J.42 (2004) 1505–1516. 
  10. [10] D. Chapelle, A. Gariah and J. Sainte-Marie, Galerkin approximation with proper orthogonal decomposition: new error estimates and illustrative examples. ESAIM: M2AN 46 (2012) 731–757. Zbl1273.65125MR2891468
  11. [11] S. Chaturantabut and D. Sorensen, A state space error estimate for POD-DEIM nonlinear model reduction. SIAM J. Numer. Anal.50 (2012) 46–63. Zbl1237.93035MR2888303
  12. [12] R. Guyan, Reduction of stiffness and mass matrices. AIAA J.3 (1965) 380–380. 
  13. [13] S. Han and B. Feeny. Enhanced proper orthogonal decomposition for the modal analysis of homogeneous structures. J. Vibration Control8 (2002) 19–40. Zbl1010.74549
  14. [14] S. Herkt, M. Hinze and R. Pinnau, Convergence analysis of Galerkin POD for linear second order evolution equations. Hamburger Beiträge zur Angewandten Math. 2011–06 (2011). Zbl1290.65090
  15. [15] U. Hetmaniuk and R. Lehoucq, Uniform accuracy of eigenpairs from a shift-invert Lanczos method. SIAM J. Matrix Anal. Appl.28 (2006) 927–948. Zbl1130.65053MR2276547
  16. [16] C. Homescu, L. Petzold and R. Serban, Error estimation for reduced-order models of dynamical systems. SIAM Rev.49 (2007) 277–299. Zbl1117.65104MR2327057
  17. [17] T. Hughes, The finite element method: linear static and dynamic finite element analysis. Prentice–Hall (1987). Zbl0634.73056MR1008473
  18. [18] D. B. Huynh, D. Knezevic and A. Patera, A Laplace transform certified reduced basis method; application to the heat equation and wave equation. C.R. Acad. Sci. Paris, Série I 349 (2011) 401–405. Zbl1215.65156
  19. [19] K. Karhunen, Zur Spektraltheorie Stochastischer Prozesse. Ann. Acad. Sci. Fennicae 34 (1946). Zbl0063.03144MR23012
  20. [20] G. Kerschen, J.C. Golinval, A. Vakakis and L. Bergman, The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn.41 (2005) 147–169. Zbl1103.70011MR2157178
  21. [21] K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math.90 (2001) 117–148. Zbl1005.65112MR1868765
  22. [22] K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal.40 (2002) 492–515. Zbl1075.65118MR1921667
  23. [23] K. Kunisch and S. Volkwein, Crank−Nicholson Galerkin proper orthogonal decomposition approximations for a general equation in fluid dynamics. 18th GAMM Seminar on Multigrid and Related Methods for Optimization Problems, Leipzig (2002) 97–114. Zbl1075.65118MR1921667
  24. [24] K. Kunisch and S. Volkwein, Optimal snapshot location for computing POD basis functions. ESAIM: M2AN 44 (2010) 509–529. Zbl1193.65113MR2666653
  25. [25] O. Lass and S. Volkwein. Adaptive POD basis computation for parameterized nonlinear systems using optimal snapshot location. Konstanzer Schriften Math.304 (2012) 1–27. Zbl1302.49040
  26. [26] J. Lienemann, D. Billger, E. B. Rudnyi, A. Greiner and J.G. Korvink, MEMS compact modeling meets model order reduction: examples of the application of Arnoldi methods to microsystems devices. Technical Proceedings of the 2004 Nanotechnology conference and trade show, Nanotech 2004, March 1-7, Boston, MA 2 (2004) 303–306. 
  27. [27] T. Lieu and C. Farhat, Adaptation of aeroelastic reduced-order models and application to an F-16 configuration. AIAA J.45 (2007) 1244–1269. 
  28. [28] M. Loeve. Fonctions aléatoires de second ordre. C.R. Acad. Sci. Paris, 220 (1945). Zbl0063.03614
  29. [29] Oberwolfach benchmark collection. (2005). Available at http://portal.uni-freiburg.de/imteksimulation/downloads/benchmark/. 
  30. [30] A. Quarteroni, R. Sacco, and F. Saleri, Numerical Mathematics, Number 37 in Texts in Applied Mathematics. Springer (2000). Zbl0957.65001MR1751750
  31. [31] M. Rathinam and L. Petzold, A new look at proper orthogonal decomposition. SIAM J. Numer. Anal.41 (2003) 1893–1925. Zbl1053.65106MR2035011
  32. [32] E. W. Sachs and M. Schu, A priori error estimates for reduced order models in finance. ESAIM: M2AN. Doi:10.1051/m2na/2012039. Zbl1268.91182
  33. [33] L. Sirovich, Turbulence and the dynamics of coherent structures. Parts I-II. Quarterly of Applied Mathematics XVL (1987) 561–590. Zbl0676.76047MR910462
  34. [34] A. Tan, Reduced basis methods for 2nd order wave equation: application to one dimensional seismic problem. Masters thesis, Singapore-MIT Alliance, National University of Singapore (2006). 
  35. [35] J.P. Thomas, E. Dowell and K. Hall, Three-dimensional transonic aeroelasticity using proper orthogonal decomposition-based reduced order models. J. Aircraft40 (2003) 544–551. 
  36. [36] K. Veroy, C. Prud’homme, D. Rovas, and A. Patera, A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. AIAA Pap. 2003-3847 (2003). 
  37. [37] K. Veroy and A. Patera, Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-based a posteriori error bounds. Int. J. Numer. Methods Eng.47 (2005) 773–788. Zbl1134.76326MR2123791
  38. [38] S. Volkwein, Model reduction using proper orthogonal decomposition. Lect. Notes (2011) 1–43. Available at http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Vorlesung.pdf. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.