Boundary augmented Lagrangian method for the Signorini problem

Shougui Zhang; Xiaolin Li

Applications of Mathematics (2016)

  • Volume: 61, Issue: 2, page 215-231
  • ISSN: 0862-7940

Abstract

top
An augmented Lagrangian method, based on boundary variational formulations and fixed point method, is designed and analyzed for the Signorini problem of the Laplacian. Using the equivalence between Signorini boundary conditions and a fixed-point problem, we develop a new iterative algorithm that formulates the Signorini problem as a sequence of corresponding variational equations with the Steklov-Poincaré operator. Both theoretical results and numerical experiments show that the method presented is efficient.

How to cite

top

Zhang, Shougui, and Li, Xiaolin. "Boundary augmented Lagrangian method for the Signorini problem." Applications of Mathematics 61.2 (2016): 215-231. <http://eudml.org/doc/276774>.

@article{Zhang2016,
abstract = {An augmented Lagrangian method, based on boundary variational formulations and fixed point method, is designed and analyzed for the Signorini problem of the Laplacian. Using the equivalence between Signorini boundary conditions and a fixed-point problem, we develop a new iterative algorithm that formulates the Signorini problem as a sequence of corresponding variational equations with the Steklov-Poincaré operator. Both theoretical results and numerical experiments show that the method presented is efficient.},
author = {Zhang, Shougui, Li, Xiaolin},
journal = {Applications of Mathematics},
keywords = {Signorini problem; augmented Lagrangian; fixed point; Steklov-Poincaré operator; boundary integral equation; Signorini problem; augmented Lagrangian; fixed point; Steklov-Poincaré operator; boundary integral equation},
language = {eng},
number = {2},
pages = {215-231},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundary augmented Lagrangian method for the Signorini problem},
url = {http://eudml.org/doc/276774},
volume = {61},
year = {2016},
}

TY - JOUR
AU - Zhang, Shougui
AU - Li, Xiaolin
TI - Boundary augmented Lagrangian method for the Signorini problem
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 215
EP - 231
AB - An augmented Lagrangian method, based on boundary variational formulations and fixed point method, is designed and analyzed for the Signorini problem of the Laplacian. Using the equivalence between Signorini boundary conditions and a fixed-point problem, we develop a new iterative algorithm that formulates the Signorini problem as a sequence of corresponding variational equations with the Steklov-Poincaré operator. Both theoretical results and numerical experiments show that the method presented is efficient.
LA - eng
KW - Signorini problem; augmented Lagrangian; fixed point; Steklov-Poincaré operator; boundary integral equation; Signorini problem; augmented Lagrangian; fixed point; Steklov-Poincaré operator; boundary integral equation
UR - http://eudml.org/doc/276774
ER -

References

top
  1. Aitchison, J. M., Elliott, C. M., Ockendon, J. R., 10.1093/imamat/30.3.269, IMA J. Appl. Math. 30 (1983), 269-287. (1983) Zbl0536.76085MR0719980DOI10.1093/imamat/30.3.269
  2. Aitchison, J. M., Poole, M. W., 10.1016/S0377-0427(98)00030-2, J. Comput. Appl. Math. 94 (1998), 55-67. (1998) Zbl0937.74071MR1638262DOI10.1016/S0377-0427(98)00030-2
  3. Amdouni, S., Hild, P., Lleras, V., Moakher, M., Renard, Y., 10.1051/m2an/2011072, ESAIM, Math. Model. Numer. Anal. 46 (2012), 813-839. (2012) Zbl1271.74354MR2891471DOI10.1051/m2an/2011072
  4. Auliac, S., Belhachmi, Z., Belgacem, F. Ben, Hecht, F., 10.1051/m2an/2012064, ESAIM, Math. Model. Numer. Anal. 47 (2013), 1185-1205. (2013) MR3082294DOI10.1051/m2an/2012064
  5. Bustinza, R., Sayas, F.-J., 10.1007/s10915-011-9548-5, J. Sci. Comput. 52 (2012), 322-339. (2012) Zbl1311.74110MR2948696DOI10.1007/s10915-011-9548-5
  6. Chouly, F., 10.1016/j.jmaa.2013.09.019, J. Math. Anal. Appl. 411 (2014), 329-339. (2014) Zbl1311.74112MR3118488DOI10.1016/j.jmaa.2013.09.019
  7. Glowinski, R., Numerical Methods for Nonlinear Variational Problems, Scientific Computation Springer, Berlin (2008). (2008) Zbl1139.65050MR2423313
  8. Han, H. D., 10.1090/S0025-5718-1990-1023048-7, Math. Comput. 55 (1990), 115-128. (1990) Zbl0705.65084MR1023048DOI10.1090/S0025-5718-1990-1023048-7
  9. He, B. S., Liao, L. Z., 10.1023/A:1013096613105, J. Optim. Theory Appl. 112 (2002), 111-128. (2002) Zbl1025.65036MR1881692DOI10.1023/A:1013096613105
  10. Hsiao, G. C., Wendland, W. L., Boundary Integral Equations, Applied Mathematical Sciences 164 Springer, Berlin (2008). (2008) Zbl1157.65066MR2441884
  11. Ito, K., Kunisch, K., 10.1007/s10492-008-0036-7, Appl. Math., Praha 53 (2008), 455-468. (2008) Zbl1199.49064MR2469587DOI10.1007/s10492-008-0036-7
  12. Karageorghis, A., 10.1016/0045-7825(87)90095-8, Comput. Methods Appl. Mech. Eng. 61 (1987), 265-276. (1987) Zbl0597.76096MR0885576DOI10.1016/0045-7825(87)90095-8
  13. Khoromskij, B. N., Wittum, G., 10.1007/978-3-642-18777-3, Lecture Notes in Computational Science and Engineering 36 Springer, Berlin (2004). (2004) Zbl1043.65128MR2045003DOI10.1007/978-3-642-18777-3
  14. Li, F., Li, X., The interpolating boundary element-free method for unilateral problems arising in variational inequalities, Math. Probl. Eng. 2014 (2014), Article ID 518727, 11 pages. (2014) MR3170472
  15. Maischak, M., Stephan, E. P., 10.1016/j.apnum.2004.09.012, Appl. Numer. Math. 54 (2005), 425-449. (2005) Zbl1114.74062MR2149362DOI10.1016/j.apnum.2004.09.012
  16. Mel'nyk, T. A., Nakvasiuk, I. A., Wendland, W. L., 10.1002/mma.1395, Math. Methods Appl. Sci. 34 (2011), 758-775. (2011) Zbl1217.35019MR2815766DOI10.1002/mma.1395
  17. Noor, M. A., Some developments in general variational inequalities, Appl. Math. Comput. 152 (2004), 199-277. (2004) Zbl1134.49304MR2050063
  18. Poullikkas, A., Karageorghis, A., Georgiou, G., 10.1093/imanum/18.2.273, IMA J. Numer. Anal. 18 (1998), 273-285. (1998) Zbl0901.73017MR1617293DOI10.1093/imanum/18.2.273
  19. Quarteroni, A., Valli, A., Theory and application of Steklov-Poincaré operators for boundary-value problems, Applied and Industrial Mathematics, Proc. Symp. Venice, 1989 Mathematics and its Applications 56 Kluwer Acad. Publ., Dordrecht (1991), 179-203. (1991) Zbl0723.65098MR1147198
  20. Spann, W., 10.1007/BF01385756, Numer. Math. 65 (1993), 337-356. (1993) Zbl0798.65106MR1227026DOI10.1007/BF01385756
  21. Stadler, G., 10.1016/j.cam.2006.04.017, J. Comput. Appl. Math. 203 (2007), 533-547. (2007) Zbl1119.49028MR2323060DOI10.1016/j.cam.2006.04.017
  22. Steinbach, O., Numerical Approximation Methods for Elliptic Boundary Value Problems. Finite and Boundary Elements, Springer, New York (2008). (2008) Zbl1153.65302MR2361676
  23. Steinbach, O., 10.1007/s00211-013-0554-4, Numer. Math. 126 (2014), 173-197. (2014) Zbl1291.65193MR3149076DOI10.1007/s00211-013-0554-4
  24. Wang, F., Han, W., Cheng, X., 10.1093/imanum/drr010, IMA J. Numer. Anal. 31 (2011), 1754-1772. (2011) Zbl1315.74021MR2846774DOI10.1093/imanum/drr010
  25. Zhang, S., 10.1016/j.enganabound.2014.08.012, Eng. Anal. Bound. Elem. 50 (2015), 313-319. (2015) MR3280499DOI10.1016/j.enganabound.2014.08.012
  26. Zhang, S., Zhu, J., 10.1016/j.enganabound.2012.08.010, Eng. Anal. Bound. Elem. 37 (2013), 176-181. (2013) Zbl1352.65601MR2999664DOI10.1016/j.enganabound.2012.08.010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.