Boundary augmented Lagrangian method for the Signorini problem
Applications of Mathematics (2016)
- Volume: 61, Issue: 2, page 215-231
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topZhang, Shougui, and Li, Xiaolin. "Boundary augmented Lagrangian method for the Signorini problem." Applications of Mathematics 61.2 (2016): 215-231. <http://eudml.org/doc/276774>.
@article{Zhang2016,
abstract = {An augmented Lagrangian method, based on boundary variational formulations and fixed point method, is designed and analyzed for the Signorini problem of the Laplacian. Using the equivalence between Signorini boundary conditions and a fixed-point problem, we develop a new iterative algorithm that formulates the Signorini problem as a sequence of corresponding variational equations with the Steklov-Poincaré operator. Both theoretical results and numerical experiments show that the method presented is efficient.},
author = {Zhang, Shougui, Li, Xiaolin},
journal = {Applications of Mathematics},
keywords = {Signorini problem; augmented Lagrangian; fixed point; Steklov-Poincaré operator; boundary integral equation; Signorini problem; augmented Lagrangian; fixed point; Steklov-Poincaré operator; boundary integral equation},
language = {eng},
number = {2},
pages = {215-231},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundary augmented Lagrangian method for the Signorini problem},
url = {http://eudml.org/doc/276774},
volume = {61},
year = {2016},
}
TY - JOUR
AU - Zhang, Shougui
AU - Li, Xiaolin
TI - Boundary augmented Lagrangian method for the Signorini problem
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 215
EP - 231
AB - An augmented Lagrangian method, based on boundary variational formulations and fixed point method, is designed and analyzed for the Signorini problem of the Laplacian. Using the equivalence between Signorini boundary conditions and a fixed-point problem, we develop a new iterative algorithm that formulates the Signorini problem as a sequence of corresponding variational equations with the Steklov-Poincaré operator. Both theoretical results and numerical experiments show that the method presented is efficient.
LA - eng
KW - Signorini problem; augmented Lagrangian; fixed point; Steklov-Poincaré operator; boundary integral equation; Signorini problem; augmented Lagrangian; fixed point; Steklov-Poincaré operator; boundary integral equation
UR - http://eudml.org/doc/276774
ER -
References
top- Aitchison, J. M., Elliott, C. M., Ockendon, J. R., 10.1093/imamat/30.3.269, IMA J. Appl. Math. 30 (1983), 269-287. (1983) Zbl0536.76085MR0719980DOI10.1093/imamat/30.3.269
- Aitchison, J. M., Poole, M. W., 10.1016/S0377-0427(98)00030-2, J. Comput. Appl. Math. 94 (1998), 55-67. (1998) Zbl0937.74071MR1638262DOI10.1016/S0377-0427(98)00030-2
- Amdouni, S., Hild, P., Lleras, V., Moakher, M., Renard, Y., 10.1051/m2an/2011072, ESAIM, Math. Model. Numer. Anal. 46 (2012), 813-839. (2012) Zbl1271.74354MR2891471DOI10.1051/m2an/2011072
- Auliac, S., Belhachmi, Z., Belgacem, F. Ben, Hecht, F., 10.1051/m2an/2012064, ESAIM, Math. Model. Numer. Anal. 47 (2013), 1185-1205. (2013) MR3082294DOI10.1051/m2an/2012064
- Bustinza, R., Sayas, F.-J., 10.1007/s10915-011-9548-5, J. Sci. Comput. 52 (2012), 322-339. (2012) Zbl1311.74110MR2948696DOI10.1007/s10915-011-9548-5
- Chouly, F., 10.1016/j.jmaa.2013.09.019, J. Math. Anal. Appl. 411 (2014), 329-339. (2014) Zbl1311.74112MR3118488DOI10.1016/j.jmaa.2013.09.019
- Glowinski, R., Numerical Methods for Nonlinear Variational Problems, Scientific Computation Springer, Berlin (2008). (2008) Zbl1139.65050MR2423313
- Han, H. D., 10.1090/S0025-5718-1990-1023048-7, Math. Comput. 55 (1990), 115-128. (1990) Zbl0705.65084MR1023048DOI10.1090/S0025-5718-1990-1023048-7
- He, B. S., Liao, L. Z., 10.1023/A:1013096613105, J. Optim. Theory Appl. 112 (2002), 111-128. (2002) Zbl1025.65036MR1881692DOI10.1023/A:1013096613105
- Hsiao, G. C., Wendland, W. L., Boundary Integral Equations, Applied Mathematical Sciences 164 Springer, Berlin (2008). (2008) Zbl1157.65066MR2441884
- Ito, K., Kunisch, K., 10.1007/s10492-008-0036-7, Appl. Math., Praha 53 (2008), 455-468. (2008) Zbl1199.49064MR2469587DOI10.1007/s10492-008-0036-7
- Karageorghis, A., 10.1016/0045-7825(87)90095-8, Comput. Methods Appl. Mech. Eng. 61 (1987), 265-276. (1987) Zbl0597.76096MR0885576DOI10.1016/0045-7825(87)90095-8
- Khoromskij, B. N., Wittum, G., 10.1007/978-3-642-18777-3, Lecture Notes in Computational Science and Engineering 36 Springer, Berlin (2004). (2004) Zbl1043.65128MR2045003DOI10.1007/978-3-642-18777-3
- Li, F., Li, X., The interpolating boundary element-free method for unilateral problems arising in variational inequalities, Math. Probl. Eng. 2014 (2014), Article ID 518727, 11 pages. (2014) MR3170472
- Maischak, M., Stephan, E. P., 10.1016/j.apnum.2004.09.012, Appl. Numer. Math. 54 (2005), 425-449. (2005) Zbl1114.74062MR2149362DOI10.1016/j.apnum.2004.09.012
- Mel'nyk, T. A., Nakvasiuk, I. A., Wendland, W. L., 10.1002/mma.1395, Math. Methods Appl. Sci. 34 (2011), 758-775. (2011) Zbl1217.35019MR2815766DOI10.1002/mma.1395
- Noor, M. A., Some developments in general variational inequalities, Appl. Math. Comput. 152 (2004), 199-277. (2004) Zbl1134.49304MR2050063
- Poullikkas, A., Karageorghis, A., Georgiou, G., 10.1093/imanum/18.2.273, IMA J. Numer. Anal. 18 (1998), 273-285. (1998) Zbl0901.73017MR1617293DOI10.1093/imanum/18.2.273
- Quarteroni, A., Valli, A., Theory and application of Steklov-Poincaré operators for boundary-value problems, Applied and Industrial Mathematics, Proc. Symp. Venice, 1989 Mathematics and its Applications 56 Kluwer Acad. Publ., Dordrecht (1991), 179-203. (1991) Zbl0723.65098MR1147198
- Spann, W., 10.1007/BF01385756, Numer. Math. 65 (1993), 337-356. (1993) Zbl0798.65106MR1227026DOI10.1007/BF01385756
- Stadler, G., 10.1016/j.cam.2006.04.017, J. Comput. Appl. Math. 203 (2007), 533-547. (2007) Zbl1119.49028MR2323060DOI10.1016/j.cam.2006.04.017
- Steinbach, O., Numerical Approximation Methods for Elliptic Boundary Value Problems. Finite and Boundary Elements, Springer, New York (2008). (2008) Zbl1153.65302MR2361676
- Steinbach, O., 10.1007/s00211-013-0554-4, Numer. Math. 126 (2014), 173-197. (2014) Zbl1291.65193MR3149076DOI10.1007/s00211-013-0554-4
- Wang, F., Han, W., Cheng, X., 10.1093/imanum/drr010, IMA J. Numer. Anal. 31 (2011), 1754-1772. (2011) Zbl1315.74021MR2846774DOI10.1093/imanum/drr010
- Zhang, S., 10.1016/j.enganabound.2014.08.012, Eng. Anal. Bound. Elem. 50 (2015), 313-319. (2015) MR3280499DOI10.1016/j.enganabound.2014.08.012
- Zhang, S., Zhu, J., 10.1016/j.enganabound.2012.08.010, Eng. Anal. Bound. Elem. 37 (2013), 176-181. (2013) Zbl1352.65601MR2999664DOI10.1016/j.enganabound.2012.08.010
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.