A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations
- Volume: 45, Issue: 4, page 761-778
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topKyza, Irene. "A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 45.4 (2011): 761-778. <http://eudml.org/doc/273327>.
@article{Kyza2011,
abstract = {We prove a posteriori error estimates of optimal order for linear Schrödinger-type equations in the L∞(L2)- and the L∞(H1)-norm. We discretize only in time by the Crank-Nicolson method. The direct use of the reconstruction technique, as it has been proposed by Akrivis et al. in [Math. Comput. 75 (2006) 511–531], leads to a posteriori upper bounds that are of optimal order in the L∞(L2)-norm, but of suboptimal order in the L∞(H1)-norm. The optimality in the case of L∞(H1)-norm is recovered by using an auxiliary initial- and boundary-value problem.},
author = {Kyza, Irene},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {linear Schrödinger equation; Crank-Nicolson method; crank-nicolson reconstruction; a posteriori error analysis; energy techniques; L∞(L2)- and L∞(H1)-norm; Crank-Nicolson reconstruction; - and -norm; numerical examples},
language = {eng},
number = {4},
pages = {761-778},
publisher = {EDP-Sciences},
title = {A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations},
url = {http://eudml.org/doc/273327},
volume = {45},
year = {2011},
}
TY - JOUR
AU - Kyza, Irene
TI - A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2011
PB - EDP-Sciences
VL - 45
IS - 4
SP - 761
EP - 778
AB - We prove a posteriori error estimates of optimal order for linear Schrödinger-type equations in the L∞(L2)- and the L∞(H1)-norm. We discretize only in time by the Crank-Nicolson method. The direct use of the reconstruction technique, as it has been proposed by Akrivis et al. in [Math. Comput. 75 (2006) 511–531], leads to a posteriori upper bounds that are of optimal order in the L∞(L2)-norm, but of suboptimal order in the L∞(H1)-norm. The optimality in the case of L∞(H1)-norm is recovered by using an auxiliary initial- and boundary-value problem.
LA - eng
KW - linear Schrödinger equation; Crank-Nicolson method; crank-nicolson reconstruction; a posteriori error analysis; energy techniques; L∞(L2)- and L∞(H1)-norm; Crank-Nicolson reconstruction; - and -norm; numerical examples
UR - http://eudml.org/doc/273327
ER -
References
top- [1] G.D. Akrivis and V.A. Dougalis, On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation. RAIRO Modél. Math. Anal. Numér.25 (1991) 643–670. Zbl0744.65085MR1135988
- [2] G. Akrivis, Ch. Makridakis and R.H. Nochetto, A posteriori error estimates for the Crank-Nicolson method for parabolic equations. Math. Comput.75 (2006) 511–531. Zbl1101.65094MR2196979
- [3] G. Akrivis, Ch. Makridakis and R.H. Nochetto, Optimal order a posteriori error estimates for a class of Runge-Kutta and Galerkin methods. Numer. Math.114 (2009) 133–160. Zbl1188.65108MR2557872
- [4] R. Anton, Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains. Bull. Soc. Math. France136 (2008) 27–65. Zbl1157.35100MR2415335
- [5] D. Bohm, Quantum Theory. Dover Publications, New York (1979).
- [6] A. Brocéhn, Galerkin methods for approximation of solutions of second order partial differential equations of Schrödinger type. Ph.D. thesis, University of Göteborg (1980).
- [7] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology 5, Evolution Problems I. Second edition, Springer-Verlag, Berlin (2000). Zbl0755.35001MR1156075
- [8] W. Dörfler, A time-and space-adaptive algorithm for the linear time-dependent Schrödinger equation. Numer. Math.73 (1996) 419–448. Zbl0860.65097MR1393174
- [9] L.C. Evans, Partial Differential Equations. Second edition, American Mathematical Society, Providence (2002). MR2597943
- [10] P. Górka, Convergence of logarithmic quantum mechanics to the linear one. Lett. Math. Phys.81 (2007) 253–264. Zbl1136.81356MR2355491
- [11] Th. Katsaounis and I. Kyza, A posteriori error estimates in the L∞(L2)-norm for Crank-Nicolson fully discrete approximations for linear Schrödinger equations. Preprint.
- [12] O. Karakashian and Ch. Makridakis, A space-time finite element method for the nonlinear Schrodinger equation: the discontinuous Galerkin method. Math. Comput.67 (1998) 479–499. Zbl0896.65068MR1459390
- [13] O. Karakashian and Ch. Makridakis, A space-time finite element method for the nonlinear Schrodinger equation: the continuous Galerkin method. SIAM J. Numer. Anal.36 (1999) 1779–1807. Zbl0934.65110MR1712169
- [14] I. Kyza, A posteriori error estimates for approximations of semilinear parabolic and Schrödinger-type equations. Ph.D. thesis, University of Crete (2009).
- [15] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications 2. Dunod, Paris (1968). Zbl0165.10801MR247244
- [16] A. Lozinski, M. Picasso and V. Prachittham, An anisotropic error estimator for the Crank-Nicolson method: Application to a parabolic problem. SIAM J. Sci. Comput.31 (2009) 2757–2783. Zbl1215.65154MR2520298
- [17] Ch. Makridakis, Space and time reconstructions in a posteriori analysis of evolution problems. ESAIM: Proc. 21 (2007) 31–44. Zbl1128.65062MR2404052
- [18] M.O. Scully and M.S. Zubairy, Quantum Optics. Cambridge University Press (2002).
- [19] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Second edition, Springer-Verlag, Berlin (2006). Zbl0528.65052
- [20] R. Verfürth, A posteriori error estimates for finite element discretizations of the heat equation. Calcolo40 (2003) 195–212. Zbl1168.65418MR2025602
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.