The Chern-Weil Homomorphism of Regular Lie Algebroids

Jan Kubarski

Publications du Département de mathématiques (Lyon) (1991)

  • page 1-69
  • ISSN: 0076-1656

How to cite

top

Kubarski, Jan. "The Chern-Weil Homomorphism of Regular Lie Algebroids." Publications du Département de mathématiques (Lyon) (1991): 1-69. <http://eudml.org/doc/273476>.

@article{Kubarski1991,
author = {Kubarski, Jan},
journal = {Publications du Département de mathématiques (Lyon)},
language = {eng},
pages = {1-69},
publisher = {Université Claude Bernard - Lyon 1},
title = {The Chern-Weil Homomorphism of Regular Lie Algebroids},
url = {http://eudml.org/doc/273476},
year = {1991},
}

TY - JOUR
AU - Kubarski, Jan
TI - The Chern-Weil Homomorphism of Regular Lie Algebroids
JO - Publications du Département de mathématiques (Lyon)
PY - 1991
PB - Université Claude Bernard - Lyon 1
SP - 1
EP - 69
LA - eng
UR - http://eudml.org/doc/273476
ER -

References

top
  1. [1] Almeida, R. & Molino, P., Suites d'Atiyah et feuilletages transversalement complets, C. R. Acad. Sci.Paris Ser. I Math., 300(1985), 13-15. Zbl0582.57015MR778785
  2. [2] Almeida, R. & Molino, P.Suites d'Atiyah, feuilletages et quantification geometrique, Estrait du Séminaire dix Geometrie différentielle. Montpellier, 1984-85. Zbl0596.57017
  3. [3] Chern, S. S., Differential Geometry of fiber bundles, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, Vol.2, 397-411. Amer. Math. Soc., Providence, R. I., 1952. Zbl0049.24201MR45432
  4. [4] Coste, A. & Dazord, P. & Weinstein, A., Groupoïdes symplectiques, Publ. Dep. Math.Université de Lyon 1, 2/A (1987). Zbl0668.58017MR996653
  5. [5] Dazord, P. & Sondaz, D., Varietes de Poisson - Algebroïdes de Lie, Publ. Dep. Math.Universite de Lyon 1, 1/B (1988). Zbl0732.58015MR1040867
  6. [6] Ehresmann, C., Les connexions infinitésimales dans un espace fibré différentiable, Colloque de topologie (espaces fibres), Bruxelles, 1950, 29-55. Liege1951. Zbl0054.07201MR42768
  7. [7] Est, W. T. van, Dense imbeddings of Lie groups. II. (I), Proc. Kon. Ned. Acad. v. Wetensch., Amsterdam, 55, Ser.A, 225-274 (1952). Zbl0049.30204
  8. [8] Greub, W., Multilinear algebra, Springer-VerlagNew York Inc.1967. Zbl0387.15001MR224623
  9. [9] Greub, W. & Halperin, S. & Vanstone, R., Connections, Curvature, and Cohomology Vol. II, Academic Press, New York and London, 1973. Zbl0335.57001MR400275
  10. [10] Greub, W. & Halperin, S. & Vanstone, R.Connections, Curvature, and Cohomology Vol. III, Academic Press, New York and London, 1976. Zbl0372.57001MR400275
  11. [11] Kamber, F. & Tondeur, PH., Foliated Bundles and Characteristic Classes, Lectures Notes in Mathematics493, Springer-Verlag1975. Zbl0308.57011MR402773
  12. [12] Kubarski, J., Exponential mapping for Lie groupoids, Colloq. Math. XLVII (1982), 267-282. Zbl0523.58045MR713145
  13. [13] Kubarski, J.Pradines-type groupoids over foliations; cohomology, connections and the Chern-Weil homomorphism, Preprint Nr 2, Institute of Mathematics, Technical University of Łódż, August 1986, MR946719
  14. [14] Kubarski, J.Characteristic classes of some Pradines-type groupoids and a generalization of the Bott Vanishing Theorem, Proceedings of the Conference on Differential Geometry and Its Applications, August 24-30, 1986, Brno, Czechoslovakia, Communications, Brno, 1987, 189-198 Zbl0641.57012MR923380
  15. [15] Kubarski, J.Pradines-type groupoids, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II, 16(1987), 125-143. Zbl0642.58005MR946719
  16. [16] Kubarski, J.Lie algebroid of a principal fibre bundle - three equivalent definitions, Prace Naukowe Politechniki Szczecinskiej, 11 (1988), 123-145. Zbl0758.55012MR1129261
  17. [17] Kubarski, J.Same invariants of Lie algebroids of principal fibre bundles, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II, 21(1989), 235-258. Zbl0678.55011MR1009576
  18. [18] Kubarski, J.Pontryagin algebra of a transitive Lie algebroid, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II, 22(1989), 117-126. Zbl0711.55010MR1061794
  19. [19] Kubarski, J.Lie algebroid of a principal fibre bundle, Publ. Dep. Math.Université de Lyon 1, (to appear). Zbl0758.55012MR1129261
  20. [20] Kubarski, J.A criterion for the minimal closedness of the Lie subalgebra corresponding to a connected nonclosed Lie subgroup, Revista Matematica de la Universidad Complutense de Madrid (to appear). Zbl0766.17004MR1145691
  21. [21] Libermann, P., Sur les prolongements des fibres principaux et les groupoïdes differentiables. Seminaire Analyse Global, Montreal, 1969. Zbl0248.53031MR356117
  22. [22] Lisiecki, K., Foliated groupoids, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II, 22(1989), 127-149. Zbl0707.57016MR1061795
  23. [23] Mackenzie, K., Lie groupoids and Lie algebroids in differential Geometry, London Mathematical Society Lecture Note Series124, Cambridge, 1987. Zbl0683.53029MR896907
  24. [24] Mackenzie, K.Algebraic constructions in the category of Lie algebroids, J. Algebra (to appear). Zbl0696.22007MR1037400
  25. [25] Malcev, A., Subgroups of Lie groups in the large, C. R. (Doklady) Acad. Sci.URSS (N, S.) 36 (1942), 5-7. (Kraus Reprint LTD. VADUZ 1963). Zbl0061.04604MR7423
  26. [26] Molino, P., Etude des feuilletages transversalement complets et applications, Ann. Sci. École Norm. Sup., 10(3) (1977), 289-307. Zbl0368.57007MR458446
  27. [27] Molino, P.Riemannian Foliations, Progress in Mathematics Vol. 73, Birkhäuser Boston Basel, 1988. Zbl0633.53001MR932463
  28. [28] Moore, C. C. & Schochet, C., Global Analysis on Foliated Spaces, Mathematical Sciences Research Institute publications; 9. 1988, Springer-VerlagNew-York Inc. Zbl0648.58034MR918974
  29. [29] Pradines, J., Theorie de Lie pour les groupoïdes differentiates dans la categorie des groupoïdes, Calcul differential dans la categorie des groupoïdes infinitesimaux", C. R. Acad. Sci. Ser.A-B, Paris, 264, (1967), 265-248, [ Zbl0154.21704MR216409
  30. [30] Pradines, J.Theorie de Lie pour les groupoïdes differentiables, Atti Conv Intern Geom 7 Diff. Bologna, 1967, Bologna-Amsterdam. Zbl0232.22028
  31. [31] Silva, A. M., Atiyah sequences and complete closed pseudogroups preserving a local parallelism. Holomorphic dynamics, Proc. 2nd Int. Colloq. Dyn. Syst., Mexico City/Mex. 1986, Lecture Notes Math.1345, 302-316 (1988). Zbl0669.58039MR980966
  32. [32] Wineerg, E. & Onishchik, A., A seminar on Lie groups and algebraic groups" (in Russian), Moscov, 1988. Zbl0722.22004

Citations in EuDML Documents

top
  1. Jan Kubarski, Connections in regular Poisson manifolds over ℝ-Lie foliations
  2. Jan Kubarski, The Characteristic Classes of Flat and of Partially Flat Regular Lie Algebroids over Foliated Manifolds
  3. Jan Kubarski, Characteristic Classes of Flat and of Partially Flat Regular Lie Algebroids over Foliated Manifolds
  4. Jan Kubarski, Algebroid nature of the characteristic classes of flat bundles
  5. Jan Kubarski, The Euler-Poincaré-Hopf theorem for flat connections in some transitive Lie algebroids

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.