The Chern-Weil Homomorphism of Regular Lie Algebroids
Publications du Département de mathématiques (Lyon) (1991)
- page 1-69
- ISSN: 0076-1656
Access Full Article
topHow to cite
topKubarski, Jan. "The Chern-Weil Homomorphism of Regular Lie Algebroids." Publications du Département de mathématiques (Lyon) (1991): 1-69. <http://eudml.org/doc/273476>.
@article{Kubarski1991,
author = {Kubarski, Jan},
journal = {Publications du Département de mathématiques (Lyon)},
language = {eng},
pages = {1-69},
publisher = {Université Claude Bernard - Lyon 1},
title = {The Chern-Weil Homomorphism of Regular Lie Algebroids},
url = {http://eudml.org/doc/273476},
year = {1991},
}
TY - JOUR
AU - Kubarski, Jan
TI - The Chern-Weil Homomorphism of Regular Lie Algebroids
JO - Publications du Département de mathématiques (Lyon)
PY - 1991
PB - Université Claude Bernard - Lyon 1
SP - 1
EP - 69
LA - eng
UR - http://eudml.org/doc/273476
ER -
References
top- [1] Almeida, R. & Molino, P., Suites d'Atiyah et feuilletages transversalement complets, C. R. Acad. Sci.Paris Ser. I Math., 300(1985), 13-15. Zbl0582.57015MR778785
- [2] Almeida, R. & Molino, P.Suites d'Atiyah, feuilletages et quantification geometrique, Estrait du Séminaire dix Geometrie différentielle. Montpellier, 1984-85. Zbl0596.57017
- [3] Chern, S. S., Differential Geometry of fiber bundles, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, Vol.2, 397-411. Amer. Math. Soc., Providence, R. I., 1952. Zbl0049.24201MR45432
- [4] Coste, A. & Dazord, P. & Weinstein, A., Groupoïdes symplectiques, Publ. Dep. Math.Université de Lyon 1, 2/A (1987). Zbl0668.58017MR996653
- [5] Dazord, P. & Sondaz, D., Varietes de Poisson - Algebroïdes de Lie, Publ. Dep. Math.Universite de Lyon 1, 1/B (1988). Zbl0732.58015MR1040867
- [6] Ehresmann, C., Les connexions infinitésimales dans un espace fibré différentiable, Colloque de topologie (espaces fibres), Bruxelles, 1950, 29-55. Liege1951. Zbl0054.07201MR42768
- [7] Est, W. T. van, Dense imbeddings of Lie groups. II. (I), Proc. Kon. Ned. Acad. v. Wetensch., Amsterdam, 55, Ser.A, 225-274 (1952). Zbl0049.30204
- [8] Greub, W., Multilinear algebra, Springer-VerlagNew York Inc.1967. Zbl0387.15001MR224623
- [9] Greub, W. & Halperin, S. & Vanstone, R., Connections, Curvature, and Cohomology Vol. II, Academic Press, New York and London, 1973. Zbl0335.57001MR400275
- [10] Greub, W. & Halperin, S. & Vanstone, R.Connections, Curvature, and Cohomology Vol. III, Academic Press, New York and London, 1976. Zbl0372.57001MR400275
- [11] Kamber, F. & Tondeur, PH., Foliated Bundles and Characteristic Classes, Lectures Notes in Mathematics493, Springer-Verlag1975. Zbl0308.57011MR402773
- [12] Kubarski, J., Exponential mapping for Lie groupoids, Colloq. Math. XLVII (1982), 267-282. Zbl0523.58045MR713145
- [13] Kubarski, J.Pradines-type groupoids over foliations; cohomology, connections and the Chern-Weil homomorphism, Preprint Nr 2, Institute of Mathematics, Technical University of Łódż, August 1986, MR946719
- [14] Kubarski, J.Characteristic classes of some Pradines-type groupoids and a generalization of the Bott Vanishing Theorem, Proceedings of the Conference on Differential Geometry and Its Applications, August 24-30, 1986, Brno, Czechoslovakia, Communications, Brno, 1987, 189-198 Zbl0641.57012MR923380
- [15] Kubarski, J.Pradines-type groupoids, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II, 16(1987), 125-143. Zbl0642.58005MR946719
- [16] Kubarski, J.Lie algebroid of a principal fibre bundle - three equivalent definitions, Prace Naukowe Politechniki Szczecinskiej, 11 (1988), 123-145. Zbl0758.55012MR1129261
- [17] Kubarski, J.Same invariants of Lie algebroids of principal fibre bundles, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II, 21(1989), 235-258. Zbl0678.55011MR1009576
- [18] Kubarski, J.Pontryagin algebra of a transitive Lie algebroid, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II, 22(1989), 117-126. Zbl0711.55010MR1061794
- [19] Kubarski, J.Lie algebroid of a principal fibre bundle, Publ. Dep. Math.Université de Lyon 1, (to appear). Zbl0758.55012MR1129261
- [20] Kubarski, J.A criterion for the minimal closedness of the Lie subalgebra corresponding to a connected nonclosed Lie subgroup, Revista Matematica de la Universidad Complutense de Madrid (to appear). Zbl0766.17004MR1145691
- [21] Libermann, P., Sur les prolongements des fibres principaux et les groupoïdes differentiables. Seminaire Analyse Global, Montreal, 1969. Zbl0248.53031MR356117
- [22] Lisiecki, K., Foliated groupoids, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II, 22(1989), 127-149. Zbl0707.57016MR1061795
- [23] Mackenzie, K., Lie groupoids and Lie algebroids in differential Geometry, London Mathematical Society Lecture Note Series124, Cambridge, 1987. Zbl0683.53029MR896907
- [24] Mackenzie, K.Algebraic constructions in the category of Lie algebroids, J. Algebra (to appear). Zbl0696.22007MR1037400
- [25] Malcev, A., Subgroups of Lie groups in the large, C. R. (Doklady) Acad. Sci.URSS (N, S.) 36 (1942), 5-7. (Kraus Reprint LTD. VADUZ 1963). Zbl0061.04604MR7423
- [26] Molino, P., Etude des feuilletages transversalement complets et applications, Ann. Sci. École Norm. Sup., 10(3) (1977), 289-307. Zbl0368.57007MR458446
- [27] Molino, P.Riemannian Foliations, Progress in Mathematics Vol. 73, Birkhäuser Boston Basel, 1988. Zbl0633.53001MR932463
- [28] Moore, C. C. & Schochet, C., Global Analysis on Foliated Spaces, Mathematical Sciences Research Institute publications; 9. 1988, Springer-VerlagNew-York Inc. Zbl0648.58034MR918974
- [29] Pradines, J., Theorie de Lie pour les groupoïdes differentiates dans la categorie des groupoïdes, Calcul differential dans la categorie des groupoïdes infinitesimaux", C. R. Acad. Sci. Ser.A-B, Paris, 264, (1967), 265-248, [ Zbl0154.21704MR216409
- [30] Pradines, J.Theorie de Lie pour les groupoïdes differentiables, Atti Conv Intern Geom 7 Diff. Bologna, 1967, Bologna-Amsterdam. Zbl0232.22028
- [31] Silva, A. M., Atiyah sequences and complete closed pseudogroups preserving a local parallelism. Holomorphic dynamics, Proc. 2nd Int. Colloq. Dyn. Syst., Mexico City/Mex. 1986, Lecture Notes Math.1345, 302-316 (1988). Zbl0669.58039MR980966
- [32] Wineerg, E. & Onishchik, A., A seminar on Lie groups and algebraic groups" (in Russian), Moscov, 1988. Zbl0722.22004
Citations in EuDML Documents
top- Jan Kubarski, Connections in regular Poisson manifolds over ℝ-Lie foliations
- Jan Kubarski, The Characteristic Classes of Flat and of Partially Flat Regular Lie Algebroids over Foliated Manifolds
- Jan Kubarski, Characteristic Classes of Flat and of Partially Flat Regular Lie Algebroids over Foliated Manifolds
- Jan Kubarski, Algebroid nature of the characteristic classes of flat bundles
- Jan Kubarski, The Euler-Poincaré-Hopf theorem for flat connections in some transitive Lie algebroids
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.