Flows in Networks and Hausdorff Measures Associated. Applications to Fractal Sets in Euclidian Space
Publications mathématiques et informatique de Rennes (1994)
- Issue: 2, page 1-77
Access Full Article
topHow to cite
topLiu, Quansheng. "Flows in Networks and Hausdorff Measures Associated. Applications to Fractal Sets in Euclidian Space." Publications mathématiques et informatique de Rennes (1994): 1-77. <http://eudml.org/doc/274026>.
@article{Liu1994,
author = {Liu, Quansheng},
journal = {Publications mathématiques et informatique de Rennes},
keywords = {tree process; network; flow; branching process; random fractal; Hausdorff measure},
language = {eng},
number = {2},
pages = {1-77},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Flows in Networks and Hausdorff Measures Associated. Applications to Fractal Sets in Euclidian Space},
url = {http://eudml.org/doc/274026},
year = {1994},
}
TY - JOUR
AU - Liu, Quansheng
TI - Flows in Networks and Hausdorff Measures Associated. Applications to Fractal Sets in Euclidian Space
JO - Publications mathématiques et informatique de Rennes
PY - 1994
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - 2
SP - 1
EP - 77
LA - eng
KW - tree process; network; flow; branching process; random fractal; Hausdorff measure
UR - http://eudml.org/doc/274026
ER -
References
top- [1] K.B. Athereya and P.E. Ney, Branching processes, Springer-Verlag, Berlin and New York, 1972. Zbl0259.60002MR373040
- [2] A.S. Besicovitch, On the fundamental geometrical properties of linearly measurable plan sets of points, Mathematische Annalen, 98 (1928) 422-64. Zbl53.0175.04MR1512414JFM53.0175.04
- [3] B. Bollobás, Graph theory, an introductory course. Berlin: Springer Verlag. Zbl0411.05032MR536131
- [4] K.J. Falconer, The Geometry of Fractal Sets, Cambridge Univ. Press, (1985). Zbl0587.28004MR867284
- [5] K.J. Falconer, Random fractals, Math. Proc. Camb. Phil. Soc., 100 (1986) 559-582. Zbl0623.60020MR857731
- [6] K.J. Falconer, Cut set sums and tree processes, Proc. Amer. Math. Soc, (2) 101 (1987) 337-346. Zbl0636.90031MR902553
- [7] K.J. Falconer, Fractal Geometry, John Wiley & Sons Ltd, 1990. Zbl0689.28003MR3236784
- [8] L.R. Ford and D.R. Fulkerson, Flows in networks, Princeton University Press, 1962. Zbl1216.05047MR159700
- [9] S. Graf, Statistically self-similar fractals, Probab. Th. & Rel. Fields74 (1987) 357-392. Zbl0591.60005MR873885
- [10] S. Graf, R.D. Maudin and S.C. Williams, The exact Hausdorff dimension in random recursive constructions, Mem.Amer.Math.Soc., Vol.71 (1988) no.381. Zbl0641.60003MR920961
- [11] G.R. Grimmett, Random flows network flows : and electrical flows through random media, London Math. Soc. Lecture Note Series: 103 (1985) 59-95. (Surveys in combinatorics 1985. Edited by IAN ANDERSON, Cambridge Univ. press.) Zbl0565.90017MR822770
- [12] Y. Guivarc'h, Sur une extension de la notion de loi semi-stable, Anal. Inst.Henri Poincaré, 26 (1990) 261-285. Zbl0703.60012MR1063751
- [13] J. Hawkes, Trees generated by a simple branching process, J. London Math. Soc. (2) 24 (1981) 373-384. Zbl0468.60081MR631950
- [14] J.P.Kahane, J. Peyrière, Sur certaines martingales de B.Mandelbrot, Adv.Math.22 (1976) 131-145. Zbl0349.60051MR431355
- [15] Q.S. Liu, The exact Hausdorff dimension of a branching set, Prépublication N° 135, Laboratoire de Probabilités, Univ. Paris VI, 1992. Zbl0842.60084
- [16] R.D. Maudin and S.C. Williams, Random constructions, Asympototic geometric and topological properties, Trans. Amer. Math. Soc.295 (1986), 325-346. Zbl0625.54047MR831202
- [17] J. Neveu, Arbres et processus de Galton-Watson, Ann. Inst. Henri Poincaré, 22 (1986) no.2, 199-207. Zbl0601.60082MR850756
- [18] C.A. Rogers, Hausdoff measures, Cambridge University Press, 1970. Zbl0915.28002MR281862
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.