Stochastic Taylor expansions and heat kernel asymptotics
ESAIM: Probability and Statistics (2012)
- Volume: 16, page 453-478
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topBaudoin, Fabrice. "Stochastic Taylor expansions and heat kernel asymptotics." ESAIM: Probability and Statistics 16 (2012): 453-478. <http://eudml.org/doc/274340>.
@article{Baudoin2012,
abstract = {These notes focus on the applications of the stochastic Taylor expansion of solutions of stochastic differential equations to the study of heat kernels in small times. As an illustration of these methods we provide a new heat kernel proof of the Chern–Gauss–Bonnet theorem.},
author = {Baudoin, Fabrice},
journal = {ESAIM: Probability and Statistics},
keywords = {stochastic Taylor expansions; index theorems; stochastic differential equations; heat kernel; Chern-Gauss-Bonnet theorem},
language = {eng},
pages = {453-478},
publisher = {EDP-Sciences},
title = {Stochastic Taylor expansions and heat kernel asymptotics},
url = {http://eudml.org/doc/274340},
volume = {16},
year = {2012},
}
TY - JOUR
AU - Baudoin, Fabrice
TI - Stochastic Taylor expansions and heat kernel asymptotics
JO - ESAIM: Probability and Statistics
PY - 2012
PB - EDP-Sciences
VL - 16
SP - 453
EP - 478
AB - These notes focus on the applications of the stochastic Taylor expansion of solutions of stochastic differential equations to the study of heat kernels in small times. As an illustration of these methods we provide a new heat kernel proof of the Chern–Gauss–Bonnet theorem.
LA - eng
KW - stochastic Taylor expansions; index theorems; stochastic differential equations; heat kernel; Chern-Gauss-Bonnet theorem
UR - http://eudml.org/doc/274340
ER -
References
top- [1] M.F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. I. Ann. Math.86 (1967) 374–407. Zbl0161.43201MR212836
- [2] R. Azencott, Formule de Taylor stochastique et développements asymptotiques d’intégrales de Feynman, in Séminaire de probabilités XVI, edited by J. Azema, M. Yor. Lect. Notes. Math. 921 (1982) 237–284. Zbl0484.60064MR658728
- [3] R. Azencott, Densité des diffusions en temps petit : développements asymptotiques (part I), Sem. Prob.18 (1984) 402–498. Zbl0546.60079MR770974
- [4] F. Baudoin, An Introduction to the Geometry of Stochastic Flows. Imperial College Press (2004). Zbl1085.60002MR2154760
- [5] F. Baudoin, Brownian Chen series and Atiyah–Singer theorem. J. Funct. Anal.254 (2008) 301–317. Zbl1147.58017MR2376573
- [6] F. Baudoin and L. Coutin, Operators associated with a stochastic differential equation driven by fractional Brownian motions. Stoc. Proc. Appl.117 (2007) 550–574. Zbl1119.60043MR2320949
- [7] G. Ben Arous, Méthodes de Laplace et de la phase stationnaire sur l’espace de Wiener (French) [The Laplace and stationary phase methods on Wiener space]. Stochastics25 (1988) 125–153. Zbl0666.60026MR999365
- [8] G. Ben Arous, Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus (French) [Asymptotic expansion of the hypoelliptic heat kernel outside of the cut-locus]. Ann. Sci. Cole Norm. Sup.21 (1988) 307–331. Zbl0699.35047MR974408
- [9] G. Ben Arous, Développement asymptotique du noyau de la chaleur hypoelliptique sur la diagonale. Ann. Inst. Fourier39 (1989) 73–99. Zbl0659.35024MR1011978
- [10] G. Ben Arous, Flots et séries de Taylor stochastiques. J. Probab. Theory Relat. Fields81 (1989) 29–77. Zbl0639.60062MR981567
- [11] G. Ben Arous and R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale. II (French) [Exponential decay of the heat kernel on the diagonal II] Probab. Theory Relat. Fields 90 (1991) 377–402. Zbl0734.60027MR1133372
- [12] N. Berline, E. Getzler and M. Vergne, Heat kernels and Dirac operators, 2nd edition. Grundlehren Text Editions, Springer (2003). Zbl1037.58015MR2273508
- [13] J.M. Bismut, The Atiyah–Singer Theorems : A Probabilistic Approach. J. Func. Anal., Part I, II 57 (1984) 329–348. Zbl0556.58027MR756173
- [14] N. Bourbaki, Groupes et Algèbres de Lie, Chap. 1–3. Hermann (1972). Zbl0483.22001
- [15] F. Castell, Asymptotic expansion of stochastic flows. Probab. Theory Relat. Fields96 (1993) 225–239. Zbl0794.60054MR1227033
- [16] K.T. Chen, Integration of paths, Geometric invariants and a generalized Baker-Hausdorff formula. Ann. Math. 65 (1957). Zbl0077.25301MR85251
- [17] S.S. Chern, A simple intrinsic proof of the Gauss-Bonnet theorem for closed Riemannian manifolds. Ann. Math.45 (1944) 747–752. Zbl0060.38103MR11027
- [18] E.B. Dynkin, Calculation of the coefficients in the Campbell-Hausdorff formula. Dodakly Akad. Nauk SSSR 57 (1947) 323–326, in Russian, English translation (1997). Zbl0029.24507MR21940
- [19] M. Fliess and D. Normand-Cyrot, Algèbres de Lie nilpotentes, formule de Baker-Campbell-Hausdorff et intégrales itérées de K.T. Chen, in Séminaire de Probabilités. Lect. Notes Math. 920 (1982). Zbl0495.60064
- [20] A. Friedman, Partial differential equations of parabolic type. Prentice-Hall, Inc., Englewood Cliffs, NJ (1964) xiv+347. Zbl0144.34903MR181836
- [21] P. Friz and N. Victoir, Euler estimates for rough differential equations. J. Differ. Equ.244 (2008) 388–412. Zbl1140.60037MR2376201
- [22] P. Friz and N. Victoir, Multidimensional stochastic processes as rough paths. Theory and Applications, Cambridge Studies in Adv. Math. (2009). Zbl1193.60053MR2604669
- [23] B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents. Acta Math.139 (1977) 95–153. Zbl0366.22010MR461589
- [24] E. Getzler, A short proof of the Atiyah–Singer index theorem. Topology25 (1986) 111–117. Zbl0607.58040MR836727
- [25] P.B. Gilkey, Curvature and the eigenvalues of the Laplacian for elliptic complexes. Adv. Math.10 (1973) 344–382. Zbl0259.58010MR324731
- [26] E.P. Hsu, Stochastic Analysis on manifolds. AMS, Providence USA. Grad. Texts Math. 38 (2002). Zbl0994.58019MR1882015
- [27] Y. Inahama, A stochastic Taylor-like expansion in the rough path theory. Preprint from Tokyo Institute of Technology (2007) Zbl1203.60073MR2679952
- [28] P.E. Kloeden and E. Platen, Numerical solution of stochastic differential equations. Appl. Math. 23 (1992). Zbl0752.60043MR1214374
- [29] H. Kunita, Asymptotic self-similarity and short time asymptotics of stochastic flows. J. Math. Sci. Univ. Tokyo4 (1997) 595–619. Zbl0890.60007MR1484603
- [30] R. Léandre, Sur le théorème d’Atiyah–Singer. Probab. Theory Relat. Fields80 (1988) 119–137. Zbl0639.58024
- [31] R. Léandre, Développement asymptotique de la densité d’une diffusion dégénérée. Forum Math.4 (1992) 45–75. Zbl0749.60054
- [32] T. Lyons, Differential equations driven by rough signals. Revista Mathemàtica Iberio Americana14 (1998) 215–310. Zbl0923.34056MR1654527
- [33] T. Lyons and N. Victoir, Cubature on Wiener space. Proc. R. Soc. Lond. A460 (2004) 169–198. Zbl1055.60049MR2052260
- [34] H. McKean and I.M. Singer, Curvature and the eigenvalues of the Laplacian. J. Differ. Geom.1 (1967) 43–69. Zbl0198.44301MR217739
- [35] P. Malliavin, Stochastic calculus of variations and hypoelliptic operators, in Proc. of Inter. Symp. Stoch. Differ. Equ., Kyoto 1976, edited by Wiley (1978) 195–263. Zbl0411.60060MR536013
- [36] P. Malliavin, Stochastic Analysis. Grundlehren der Mathematischen Wissenschaften 313 (1997). Zbl0878.60001MR1450093
- [37] V.K. Patodi, An analytic proof of the Riemann-Roch-Hirzebruch theorem. J. Differ. Geom.5 (1971) 251–283. Zbl0219.53054MR290318
- [38] C. Reutenauer, Free Lie algebras, London Mathematical Society Monographs. New series 7 (1993). Zbl0798.17001MR1231799
- [39] S. Rosenberg, The Laplacian on a Riemannian manifold. London Mathematical Society Student Texts 31 (1997). Zbl0868.58074MR1462892
- [40] L.P. Rotschild and E.M. Stein, Hypoelliptic differential operators and Nilpotent groups. Acta Math.137 (1976) 247–320. Zbl0346.35030MR436223
- [41] D. Stroock and S.R.S. Varadhan, Multidimensional diffusion processes. Springer-Verlag, Berlin, New York. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 233 (1979) xii+338. Zbl0426.60069MR532498
- [42] R.S. Strichartz, The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations. J. Func. Anal. 72. (1987) 320–345. Zbl0623.34058MR886816
- [43] S. Takanobu, Diagonal short time asymptotics of heat kernels for certain degenerate second order differential operators of Hörmander type. Publ. Res. Inst. Math. Sci.24 (1988) 169–203. Zbl0677.35019MR944857
- [44] M.E. Taylor, Partial Differential Equations, Basic Theory, 2nd edition. Appl. Math. 23 (1999) Zbl0869.35001MR1395147
- [45] M.E. Taylor, Partial Differential Equations, Qualitative Studies of Linear Equations. Appl. Math. Sci. 116 (1996). Zbl0869.35003MR1395149
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.