Stochastic Taylor expansions and heat kernel asymptotics

Fabrice Baudoin

ESAIM: Probability and Statistics (2012)

  • Volume: 16, page 453-478
  • ISSN: 1292-8100

Abstract

top
These notes focus on the applications of the stochastic Taylor expansion of solutions of stochastic differential equations to the study of heat kernels in small times. As an illustration of these methods we provide a new heat kernel proof of the Chern–Gauss–Bonnet theorem.

How to cite

top

Baudoin, Fabrice. "Stochastic Taylor expansions and heat kernel asymptotics." ESAIM: Probability and Statistics 16 (2012): 453-478. <http://eudml.org/doc/274340>.

@article{Baudoin2012,
abstract = {These notes focus on the applications of the stochastic Taylor expansion of solutions of stochastic differential equations to the study of heat kernels in small times. As an illustration of these methods we provide a new heat kernel proof of the Chern–Gauss–Bonnet theorem.},
author = {Baudoin, Fabrice},
journal = {ESAIM: Probability and Statistics},
keywords = {stochastic Taylor expansions; index theorems; stochastic differential equations; heat kernel; Chern-Gauss-Bonnet theorem},
language = {eng},
pages = {453-478},
publisher = {EDP-Sciences},
title = {Stochastic Taylor expansions and heat kernel asymptotics},
url = {http://eudml.org/doc/274340},
volume = {16},
year = {2012},
}

TY - JOUR
AU - Baudoin, Fabrice
TI - Stochastic Taylor expansions and heat kernel asymptotics
JO - ESAIM: Probability and Statistics
PY - 2012
PB - EDP-Sciences
VL - 16
SP - 453
EP - 478
AB - These notes focus on the applications of the stochastic Taylor expansion of solutions of stochastic differential equations to the study of heat kernels in small times. As an illustration of these methods we provide a new heat kernel proof of the Chern–Gauss–Bonnet theorem.
LA - eng
KW - stochastic Taylor expansions; index theorems; stochastic differential equations; heat kernel; Chern-Gauss-Bonnet theorem
UR - http://eudml.org/doc/274340
ER -

References

top
  1. [1] M.F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. I. Ann. Math.86 (1967) 374–407. Zbl0161.43201MR212836
  2. [2] R. Azencott, Formule de Taylor stochastique et développements asymptotiques d’intégrales de Feynman, in Séminaire de probabilités XVI, edited by J. Azema, M. Yor. Lect. Notes. Math. 921 (1982) 237–284. Zbl0484.60064MR658728
  3. [3] R. Azencott, Densité des diffusions en temps petit : développements asymptotiques (part I), Sem. Prob.18 (1984) 402–498. Zbl0546.60079MR770974
  4. [4] F. Baudoin, An Introduction to the Geometry of Stochastic Flows. Imperial College Press (2004). Zbl1085.60002MR2154760
  5. [5] F. Baudoin, Brownian Chen series and Atiyah–Singer theorem. J. Funct. Anal.254 (2008) 301–317. Zbl1147.58017MR2376573
  6. [6] F. Baudoin and L. Coutin, Operators associated with a stochastic differential equation driven by fractional Brownian motions. Stoc. Proc. Appl.117 (2007) 550–574. Zbl1119.60043MR2320949
  7. [7] G. Ben Arous, Méthodes de Laplace et de la phase stationnaire sur l’espace de Wiener (French) [The Laplace and stationary phase methods on Wiener space]. Stochastics25 (1988) 125–153. Zbl0666.60026MR999365
  8. [8] G. Ben Arous, Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus (French) [Asymptotic expansion of the hypoelliptic heat kernel outside of the cut-locus]. Ann. Sci. Cole Norm. Sup.21 (1988) 307–331. Zbl0699.35047MR974408
  9. [9] G. Ben Arous, Développement asymptotique du noyau de la chaleur hypoelliptique sur la diagonale. Ann. Inst. Fourier39 (1989) 73–99. Zbl0659.35024MR1011978
  10. [10] G. Ben Arous, Flots et séries de Taylor stochastiques. J. Probab. Theory Relat. Fields81 (1989) 29–77. Zbl0639.60062MR981567
  11. [11] G. Ben Arous and R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale. II (French) [Exponential decay of the heat kernel on the diagonal II] Probab. Theory Relat. Fields 90 (1991) 377–402. Zbl0734.60027MR1133372
  12. [12] N. Berline, E. Getzler and M. Vergne, Heat kernels and Dirac operators, 2nd edition. Grundlehren Text Editions, Springer (2003). Zbl1037.58015MR2273508
  13. [13] J.M. Bismut, The Atiyah–Singer Theorems : A Probabilistic Approach. J. Func. Anal., Part I, II 57 (1984) 329–348. Zbl0556.58027MR756173
  14. [14] N. Bourbaki, Groupes et Algèbres de Lie, Chap. 1–3. Hermann (1972). Zbl0483.22001
  15. [15] F. Castell, Asymptotic expansion of stochastic flows. Probab. Theory Relat. Fields96 (1993) 225–239. Zbl0794.60054MR1227033
  16. [16] K.T. Chen, Integration of paths, Geometric invariants and a generalized Baker-Hausdorff formula. Ann. Math. 65 (1957). Zbl0077.25301MR85251
  17. [17] S.S. Chern, A simple intrinsic proof of the Gauss-Bonnet theorem for closed Riemannian manifolds. Ann. Math.45 (1944) 747–752. Zbl0060.38103MR11027
  18. [18] E.B. Dynkin, Calculation of the coefficients in the Campbell-Hausdorff formula. Dodakly Akad. Nauk SSSR 57 (1947) 323–326, in Russian, English translation (1997). Zbl0029.24507MR21940
  19. [19] M. Fliess and D. Normand-Cyrot, Algèbres de Lie nilpotentes, formule de Baker-Campbell-Hausdorff et intégrales itérées de K.T. Chen, in Séminaire de Probabilités. Lect. Notes Math. 920 (1982). Zbl0495.60064
  20. [20] A. Friedman, Partial differential equations of parabolic type. Prentice-Hall, Inc., Englewood Cliffs, NJ (1964) xiv+347. Zbl0144.34903MR181836
  21. [21] P. Friz and N. Victoir, Euler estimates for rough differential equations. J. Differ. Equ.244 (2008) 388–412. Zbl1140.60037MR2376201
  22. [22] P. Friz and N. Victoir, Multidimensional stochastic processes as rough paths. Theory and Applications, Cambridge Studies in Adv. Math. (2009). Zbl1193.60053MR2604669
  23. [23] B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents. Acta Math.139 (1977) 95–153. Zbl0366.22010MR461589
  24. [24] E. Getzler, A short proof of the Atiyah–Singer index theorem. Topology25 (1986) 111–117. Zbl0607.58040MR836727
  25. [25] P.B. Gilkey, Curvature and the eigenvalues of the Laplacian for elliptic complexes. Adv. Math.10 (1973) 344–382. Zbl0259.58010MR324731
  26. [26] E.P. Hsu, Stochastic Analysis on manifolds. AMS, Providence USA. Grad. Texts Math. 38 (2002). Zbl0994.58019MR1882015
  27. [27] Y. Inahama, A stochastic Taylor-like expansion in the rough path theory. Preprint from Tokyo Institute of Technology (2007) Zbl1203.60073MR2679952
  28. [28] P.E. Kloeden and E. Platen, Numerical solution of stochastic differential equations. Appl. Math. 23 (1992). Zbl0752.60043MR1214374
  29. [29] H. Kunita, Asymptotic self-similarity and short time asymptotics of stochastic flows. J. Math. Sci. Univ. Tokyo4 (1997) 595–619. Zbl0890.60007MR1484603
  30. [30] R. Léandre, Sur le théorème d’Atiyah–Singer. Probab. Theory Relat. Fields80 (1988) 119–137. Zbl0639.58024
  31. [31] R. Léandre, Développement asymptotique de la densité d’une diffusion dégénérée. Forum Math.4 (1992) 45–75. Zbl0749.60054
  32. [32] T. Lyons, Differential equations driven by rough signals. Revista Mathemàtica Iberio Americana14 (1998) 215–310. Zbl0923.34056MR1654527
  33. [33] T. Lyons and N. Victoir, Cubature on Wiener space. Proc. R. Soc. Lond. A460 (2004) 169–198. Zbl1055.60049MR2052260
  34. [34] H. McKean and I.M. Singer, Curvature and the eigenvalues of the Laplacian. J. Differ. Geom.1 (1967) 43–69. Zbl0198.44301MR217739
  35. [35] P. Malliavin, Stochastic calculus of variations and hypoelliptic operators, in Proc. of Inter. Symp. Stoch. Differ. Equ., Kyoto 1976, edited by Wiley (1978) 195–263. Zbl0411.60060MR536013
  36. [36] P. Malliavin, Stochastic Analysis. Grundlehren der Mathematischen Wissenschaften 313 (1997). Zbl0878.60001MR1450093
  37. [37] V.K. Patodi, An analytic proof of the Riemann-Roch-Hirzebruch theorem. J. Differ. Geom.5 (1971) 251–283. Zbl0219.53054MR290318
  38. [38] C. Reutenauer, Free Lie algebras, London Mathematical Society Monographs. New series 7 (1993). Zbl0798.17001MR1231799
  39. [39] S. Rosenberg, The Laplacian on a Riemannian manifold. London Mathematical Society Student Texts 31 (1997). Zbl0868.58074MR1462892
  40. [40] L.P. Rotschild and E.M. Stein, Hypoelliptic differential operators and Nilpotent groups. Acta Math.137 (1976) 247–320. Zbl0346.35030MR436223
  41. [41] D. Stroock and S.R.S. Varadhan, Multidimensional diffusion processes. Springer-Verlag, Berlin, New York. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 233 (1979) xii+338. Zbl0426.60069MR532498
  42. [42] R.S. Strichartz, The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations. J. Func. Anal. 72. (1987) 320–345. Zbl0623.34058MR886816
  43. [43] S. Takanobu, Diagonal short time asymptotics of heat kernels for certain degenerate second order differential operators of Hörmander type. Publ. Res. Inst. Math. Sci.24 (1988) 169–203. Zbl0677.35019MR944857
  44. [44] M.E. Taylor, Partial Differential Equations, Basic Theory, 2nd edition. Appl. Math. 23 (1999) Zbl0869.35001MR1395147
  45. [45] M.E. Taylor, Partial Differential Equations, Qualitative Studies of Linear Equations. Appl. Math. Sci. 116 (1996). Zbl0869.35003MR1395149

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.