Page 1

Displaying 1 – 8 of 8

Showing per page

Heat kernel estimates for critical fractional diffusion operators

Longjie Xie, Xicheng Zhang (2014)

Studia Mathematica

We construct the heat kernel of the 1/2-order Laplacian perturbed by a first-order gradient term in Hölder spaces and a zero-order potential term in a generalized Kato class, and obtain sharp two-sided estimates as well as a gradient estimate of the heat kernel, where the proof of the lower bound is based on a probabilistic approach.

Heat kernel on manifolds with ends

Alexander Grigor’yan, Laurent Saloff-Coste (2009)

Annales de l’institut Fourier

We prove two-sided estimates of heat kernels on non-parabolic Riemannian manifolds with ends, assuming that the heat kernel on each end separately satisfies the Li-Yau estimate.

Sharp estimates of the Jacobi heat kernel

Adam Nowak, Peter Sjögren (2013)

Studia Mathematica

The heat kernel associated with the setting of the classical Jacobi polynomials is defined by an oscillatory sum which cannot be computed explicitly, in contrast to the situation for the other two classical systems of orthogonal polynomials. We deduce sharp estimates giving the order of magnitude of this kernel, for type parameters α, β ≥ -1/2. Using quite different methods, Coulhon, Kerkyacharian and Petrushev recently also obtained such estimates. As an application of the bounds, we show that...

Sobolev-Kantorovich Inequalities

Michel Ledoux (2015)

Analysis and Geometry in Metric Spaces

In a recent work, E. Cinti and F. Otto established some new interpolation inequalities in the study of pattern formation, bounding the Lr(μ)-norm of a probability density with respect to the reference measure μ by its Sobolev norm and the Kantorovich-Wasserstein distance to μ. This article emphasizes this family of interpolation inequalities, called Sobolev-Kantorovich inequalities, which may be established in the rather large setting of non-negatively curved (weighted) Riemannian manifolds by means...

Stochastic Taylor expansions and heat kernel asymptotics

Fabrice Baudoin (2012)

ESAIM: Probability and Statistics

These notes focus on the applications of the stochastic Taylor expansion of solutions of stochastic differential equations to the study of heat kernels in small times. As an illustration of these methods we provide a new heat kernel proof of the Chern–Gauss–Bonnet theorem.

The Geometry of Differential Harnack Estimates

Sebastian Helmensdorfer, Peter Topping (2011/2012)

Séminaire de théorie spectrale et géométrie

In this short note, we hope to give a rapid induction for non-experts into the world of Differential Harnack inequalities, which have been so influential in geometric analysis and probability theory over the past few decades. At the coarsest level, these are often mysterious-looking inequalities that hold for ‘positive’ solutions of some parabolic PDE, and can be verified quickly by grinding out a computation and applying a maximum principle. In this note we emphasise the geometry behind the Harnack...

[unknown]

Hart F. Smith, Maciej Zworski (0)

Annales de l’institut Fourier

Currently displaying 1 – 8 of 8

Page 1