Multifractional brownian fields indexed by metric spaces with distances of negative type
ESAIM: Probability and Statistics (2013)
- Volume: 17, page 219-223
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] B. Bekka, P. De la Harpe and A. Valette, Kazhdan’s property (T). Cambridge University Press (2008). Zbl1146.22009
- [2] A. Benassi, S. Jaffard and D. Roux, Gaussian processes and pseudodifferential elliptic operators. Rev. Mat. Iberoam.13 (1997) 19–90. Zbl0880.60053MR1462329
- [3] A. Benassi, S. Cohen and J. Istas, Identifying the multifractional function of a Gaussian process. Stat. Probab. Lett.39 (1998) 337–345. Zbl0931.60022MR1646220
- [4] N. Chentsov, Lévy’s Brownian motion of several parameters and generalized white noise. Theory Probab. Appl.2 (1957) 265–266.
- [5] J. Faraut and H. Harzallah, Distances hilbertiennes invariantes sur un espace homogène. Ann. Inst. Fourier24 (1974) 171–217. Zbl0265.43013MR365042
- [6] A. Kolmogorov, Wienersche Spiralen und einige andere interessante Kurven im Hilbertsche Raum (German). C. R. (Dokl.) Acad. Sci. URSS 26 (1940) 115–118. Zbl0022.36001MR3441
- [7] C. Lacaux, Real harmonizable multifractional Lévy motions. Ann. Inst. Henri Poincaré40 (2004) 259–277. Zbl1041.60038MR2060453
- [8] C. Lacaux, Series representation and simulation of multifractional Lévy motions. Adv. Appl. Probab.36 (2004) 171–197. Zbl1053.60008MR2035779
- [9] P. Lévy, Processus stochastiques et mouvement Brownien. Gauthier-Villars (1965). Zbl0034.22603MR190953
- [10] J. Istas, Spherical and hyperbolic fractional Brownian motion. Electron. Commun. Probab.10 (2005) 254–262. Zbl1112.60029MR2198600
- [11] J. Istas, On fractional stable fields indexed by metric spaces. Electron. Commun. Probab.11 (2006) 242–251. Zbl1110.60032MR2266715
- [12] J. Istas and C. Lacaux, On locally self-similar fractional random fields indexed by a manifold. Preprint (2009). Zbl1293.60056MR3176470
- [13] B. Mandelbrot and J. Van Ness, Fractional Brownian motions, fractional noises and applications. SIAM Review10 (1968) 422–437. Zbl0179.47801MR242239
- [14] R. Peltier and J. Lévy-Vehel, Multifractional Brownian motion : definition and preliminary results. Rapport de recherche de l’INRIA 2645 (1996).
- [15] A. Valette, Les représentations uniformément bornées associées à un arbre réel. Bull. Soc. Math. Belgique42 (1990) 747–760. Zbl0727.43002MR1316222