Automorphy for some l-adic lifts of automorphic mod l Galois representations
Laurent Clozel; Michael Harris; Richard Taylor
Publications Mathématiques de l'IHÉS (2008)
- Volume: 108, page 1-181
- ISSN: 0073-8301
Access Full Article
topAbstract
topHow to cite
topReferences
top- 1. J. Arthur, L. Clozel, Simple Algebras, Base Change and the Advanced Theory of the Trace Formula, Ann. Math. Stud. 120 (1989), Princeton University Press, Princeton, NJ Zbl0682.10022MR1007299
- 2. I.N. Bernstein, A.V. Zelevinsky, Induced representations of reductive -adic groups. I, Ann. Sci. Éc. Norm. Supér., IV. Sér.10 (1977), p. 441-472 Zbl0412.22015MR579172
- 3. J. Carayol, Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet, in: p-adic Monodromy and the Birch and Swinnerton–Dyer Conjecture, Contemp. Math. 165 (1994), Amer. Math. Soc., Providence, RI Zbl0812.11036
- 4. L. Clozel, On the cohomology of Kottwitz’s arithmetic varieties, Duke Math. J.72 (1993), p. 757-795 Zbl0974.11019MR1253624
- 5. L. Clozel, J.-P. Labesse, Changement de base pour les représentations cohomologiques des certaines groupes unitaires, appendix to “Cohomologie, stabilisation et changement de base”, Astérisque257 (1999), p. 120-132 MR1695940
- 6. E. Cline, B. Parshall, L. Scott, Cohomology of finite groups of Lie type I, Publ. Math., Inst. Hautes Étud. Sci.45 (1975), p. 169-191 Zbl0412.20044MR399283
- 7. C. Curtis, I. Reiner, Methods of Representation Theory I, (1981), Wiley Interscience, New York Zbl0616.20001MR632548
- 8. H. Darmon, F. Diamond, and R. Taylor, Fermat’s last theorem, in Current Developments in Mathematics, International Press, Cambridge, MA, 1994. Zbl0877.11035MR1474977
- 9. F. Diamond, The Taylor–Wiles construction and multiplicity one, Invent. Math.128 (1997), p. 379-391 Zbl0916.11037MR1440309
- 10. M. Dickinson, A criterion for existence of a universal deformation ring, appendix to “Deformations of Galois representations” by F. Gouvea, in Arithmetic Algebraic Geometry (Park City, UT, 1999), Amer. Math. Soc., Providence, RI, 2001.
- 11. F. Diamond, R. Taylor, Nonoptimal levels of mod l modular representations, Invent. Math.115 (1994), p. 435-462 Zbl0847.11025MR1262939
- 12. J.-M. Fontaine, G. Laffaille, Construction de représentations p-adiques, Ann. Sci. Éc. Norm. Supér., IV. Sér.15 (1982), p. 547-608 Zbl0579.14037MR707328
- 13. M. Harris, R. Taylor, The Geometry and Cohomology of Some Simple Shimura Varieties, Ann. Math. Stud. 151 (2001), Princeton University Press, Princeton, NJ Zbl1036.11027MR1876802
- 14. M. Harris, N. Shepherd-Barron, and R. Taylor, A family of hypersurfaces and potential automorphy, to appear in Ann. Math. Zbl1263.11061
- 15. Y. Ihara, On modular curves over finite fields, in Discrete Subgroups of Lie Groups and Applications to Moduli, Oxford University Press, Bombay, 1975. Zbl0343.14007MR399105
- 16. H. Jacquet, J. Shalika, On Euler products and the classification of automorphic forms I, Amer. J. Math.103 (1981), p. 499-558 Zbl0491.10020MR618323
- 17. H. Jacquet, J. Shalika, On Euler products and the classification of automorphic forms II, Amer. J. Math.103 (1981), p. 777-815 Zbl0491.10020MR623137
- 18. H. Jacquet, I. Piatetski-Shapiro, J. Shalika, Conducteur des représentations du groupe linéaire, Math. Ann.256 (1981), p. 199-214 Zbl0443.22013MR620708
- 19. X. Lazarus, Module universel en caractéristique lgt;0 associé à un caractère de l’algèbre de Hecke de GL(n) sur un corps p-adique, avec , J. Algebra213 (1999), p. 662-686 Zbl0920.22010MR1673473
- 20. H. Lenstra, Complete intersections and Gorenstein rings, in Elliptic Curves, Modular Forms and Fermat’s Last Theorem, International Press, Cambridge, MA, 1995. Zbl0860.13012MR1363497
- 21. W. R. Mann, Local level-raising for GL n , PhD thesis, Harvard University (2001). MR2702054
- 22. W. R. Mann, Local level-raising on GL(n), partial preprint. MR2702054
- 23. D. Mauger, Algèbres de Hecke quasi-ordinaires universelles, Ann. Sci. Éc. Norm. Supér., IV. Sér.37 (2004), p. 171-222 Zbl1196.11074MR2061780
- 24. B. Mazur, An introduction to the deformation theory of Galois representations, in Modular Forms and Fermat’s Last Theorem (Boston, MA, 1995), Springer, New York, 1997. Zbl0901.11015MR1638481
- 25. C. Moeglin, J.-L. Waldspurger, Le spectre résiduel de GL(n), Ann. Sci. Éc. Norm. Supér., IV. Sér.22 (1989), p. 605-674 Zbl0696.10023MR1026752
- 26. M. Nori, On subgroups of , Invent. Math.88 (1987), p. 257-275 Zbl0632.20030MR880952
- 27. J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of Number Fields, Grundl. Math. Wiss. 323 (1989), Springer, Berlin Zbl0948.11001MR1737196
- 28. R. Ramakrishna, On a variation of Mazur’s deformation functor, Compos. Math.87 (1993), p. 269-286 Zbl0910.11023MR1227448
- 29. R. Ramakrishna, Deforming Galois representations and the conjectures of Serre and Fontaine–Mazur, Ann. Math.156 (2002), p. 115-154 Zbl1076.11035MR1935843
- 30. K. Ribet, Congruence relations between modular forms, in Proceedings of the Warsaw ICM, PWN, Warsaw, 1984. Zbl0575.10024MR804706
- 31. A. Roche, Types and Hecke algebras for principal series representations of split reductive p-adic groups, Ann. Sci. Éc. Norm. Supér., IV. Sér.31 (1998), p. 361-413 Zbl0903.22009MR1621409
- 32. J.-P. Serre, Abelian l-adic Representations and Elliptic Curves, (1968), Benjamin, New York, Amsterdam Zbl0186.25701MR263823
- 33. J.-P. Serre, Sur la semi-simplicité des produits tensoriels de représentations de groupes, Invent. Math.116 (1994), p. 513-530 Zbl0816.20014MR1253203
- 34. T. Shintani, On an explicit formula for class-1 “Whittaker functions” on GL n over P-adic fields, Proc. Japan Acad.52 (1976), p. 180-182 Zbl0387.43002MR407208
- 35. C. Skinner, A. Wiles, Base change and a problem of Serre, Duke Math. J.107 (2001), p. 15-25 Zbl1016.11017MR1815248
- 36. J. Tate, Number theoretic background, in A. Borel and W. Casselman Automorphic Forms, Representations and L-Functions, Proc. Symp. Pure Math., vol. 33(2), Amer. Math. Soc., Providence, RI, 1979. Zbl0422.12007MR546607
- 37. R. Taylor, Automorphy for some l-adic lifts of automorphic mod l Galois representations. II, this volume. Zbl1169.11021
- 38. J. Tilouine, Deformations of Galois Representations and Hecke Algebras, (2002), Mehta Institute, New Dehli Zbl1009.11033
- 39. R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. Math.141 (1995), p. 553-572 Zbl0823.11030MR1333036
- 40. M.-F. Vignéras, Représentations l-modulaires d’un groupe réductif p-adique avec , Progr. Math. 137 (1996), Birkhäuser, Boston, MA Zbl0859.22001
- 41. M.-F. Vignéras, Induced R-representations of p-adic reductive groups, Sel. Math., New Ser.4 (1998), p. 549-623 Zbl0943.22017
- 42. A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. Math.141 (1995), p. 443-551 Zbl0823.11029MR1333035