Automorphy for some l-adic lifts of automorphic mod l Galois representations

Laurent Clozel; Michael Harris; Richard Taylor

Publications Mathématiques de l'IHÉS (2008)

  • Volume: 108, page 1-181
  • ISSN: 0073-8301

Abstract

top
We extend the methods of Wiles and of Taylor and Wiles from GL2 to higher rank unitary groups and establish the automorphy of suitable conjugate self-dual, regular (de Rham with distinct Hodge–Tate numbers), minimally ramified, l-adic lifts of certain automorphic mod l Galois representations of any dimension. We also make a conjecture about the structure of mod l automorphic forms on definite unitary groups, which would generalise a lemma of Ihara for GL2. Following Wiles’ method we show that this conjecture implies that our automorphy lifting theorem could be extended to cover lifts that are not minimally ramified.

How to cite

top

Clozel, Laurent, Harris, Michael, and Taylor, Richard. "Automorphy for some l-adic lifts of automorphic mod l Galois representations." Publications Mathématiques de l'IHÉS 108 (2008): 1-181. <http://eudml.org/doc/274357>.

@article{Clozel2008,
abstract = {We extend the methods of Wiles and of Taylor and Wiles from GL2 to higher rank unitary groups and establish the automorphy of suitable conjugate self-dual, regular (de Rham with distinct Hodge–Tate numbers), minimally ramified, l-adic lifts of certain automorphic mod l Galois representations of any dimension. We also make a conjecture about the structure of mod l automorphic forms on definite unitary groups, which would generalise a lemma of Ihara for GL2. Following Wiles’ method we show that this conjecture implies that our automorphy lifting theorem could be extended to cover lifts that are not minimally ramified.},
author = {Clozel, Laurent, Harris, Michael, Taylor, Richard},
journal = {Publications Mathématiques de l'IHÉS},
language = {eng},
pages = {1-181},
publisher = {Springer-Verlag},
title = {Automorphy for some l-adic lifts of automorphic mod l Galois representations},
url = {http://eudml.org/doc/274357},
volume = {108},
year = {2008},
}

TY - JOUR
AU - Clozel, Laurent
AU - Harris, Michael
AU - Taylor, Richard
TI - Automorphy for some l-adic lifts of automorphic mod l Galois representations
JO - Publications Mathématiques de l'IHÉS
PY - 2008
PB - Springer-Verlag
VL - 108
SP - 1
EP - 181
AB - We extend the methods of Wiles and of Taylor and Wiles from GL2 to higher rank unitary groups and establish the automorphy of suitable conjugate self-dual, regular (de Rham with distinct Hodge–Tate numbers), minimally ramified, l-adic lifts of certain automorphic mod l Galois representations of any dimension. We also make a conjecture about the structure of mod l automorphic forms on definite unitary groups, which would generalise a lemma of Ihara for GL2. Following Wiles’ method we show that this conjecture implies that our automorphy lifting theorem could be extended to cover lifts that are not minimally ramified.
LA - eng
UR - http://eudml.org/doc/274357
ER -

References

top
  1. 1. J. Arthur, L. Clozel, Simple Algebras, Base Change and the Advanced Theory of the Trace Formula, Ann. Math. Stud. 120 (1989), Princeton University Press, Princeton, NJ Zbl0682.10022MR1007299
  2. 2. I.N. Bernstein, A.V. Zelevinsky, Induced representations of reductive 𝔭 -adic groups. I, Ann. Sci. Éc. Norm. Supér., IV. Sér.10 (1977), p. 441-472 Zbl0412.22015MR579172
  3. 3. J. Carayol, Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet, in: p-adic Monodromy and the Birch and Swinnerton–Dyer Conjecture, Contemp. Math. 165 (1994), Amer. Math. Soc., Providence, RI Zbl0812.11036
  4. 4. L. Clozel, On the cohomology of Kottwitz’s arithmetic varieties, Duke Math. J.72 (1993), p. 757-795 Zbl0974.11019MR1253624
  5. 5. L. Clozel, J.-P. Labesse, Changement de base pour les représentations cohomologiques des certaines groupes unitaires, appendix to “Cohomologie, stabilisation et changement de base”, Astérisque257 (1999), p. 120-132 MR1695940
  6. 6. E. Cline, B. Parshall, L. Scott, Cohomology of finite groups of Lie type I, Publ. Math., Inst. Hautes Étud. Sci.45 (1975), p. 169-191 Zbl0412.20044MR399283
  7. 7. C. Curtis, I. Reiner, Methods of Representation Theory I, (1981), Wiley Interscience, New York Zbl0616.20001MR632548
  8. 8. H. Darmon, F. Diamond, and R. Taylor, Fermat’s last theorem, in Current Developments in Mathematics, International Press, Cambridge, MA, 1994. Zbl0877.11035MR1474977
  9. 9. F. Diamond, The Taylor–Wiles construction and multiplicity one, Invent. Math.128 (1997), p. 379-391 Zbl0916.11037MR1440309
  10. 10. M. Dickinson, A criterion for existence of a universal deformation ring, appendix to “Deformations of Galois representations” by F. Gouvea, in Arithmetic Algebraic Geometry (Park City, UT, 1999), Amer. Math. Soc., Providence, RI, 2001. 
  11. 11. F. Diamond, R. Taylor, Nonoptimal levels of mod l modular representations, Invent. Math.115 (1994), p. 435-462 Zbl0847.11025MR1262939
  12. 12. J.-M. Fontaine, G. Laffaille, Construction de représentations p-adiques, Ann. Sci. Éc. Norm. Supér., IV. Sér.15 (1982), p. 547-608 Zbl0579.14037MR707328
  13. 13. M. Harris, R. Taylor, The Geometry and Cohomology of Some Simple Shimura Varieties, Ann. Math. Stud. 151 (2001), Princeton University Press, Princeton, NJ Zbl1036.11027MR1876802
  14. 14. M. Harris, N. Shepherd-Barron, and R. Taylor, A family of hypersurfaces and potential automorphy, to appear in Ann. Math. Zbl1263.11061
  15. 15. Y. Ihara, On modular curves over finite fields, in Discrete Subgroups of Lie Groups and Applications to Moduli, Oxford University Press, Bombay, 1975. Zbl0343.14007MR399105
  16. 16. H. Jacquet, J. Shalika, On Euler products and the classification of automorphic forms I, Amer. J. Math.103 (1981), p. 499-558 Zbl0491.10020MR618323
  17. 17. H. Jacquet, J. Shalika, On Euler products and the classification of automorphic forms II, Amer. J. Math.103 (1981), p. 777-815 Zbl0491.10020MR623137
  18. 18. H. Jacquet, I. Piatetski-Shapiro, J. Shalika, Conducteur des représentations du groupe linéaire, Math. Ann.256 (1981), p. 199-214 Zbl0443.22013MR620708
  19. 19. X. Lazarus, Module universel en caractéristique lgt;0 associé à un caractère de l’algèbre de Hecke de GL(n) sur un corps p-adique, avec l p , J. Algebra213 (1999), p. 662-686 Zbl0920.22010MR1673473
  20. 20. H. Lenstra, Complete intersections and Gorenstein rings, in Elliptic Curves, Modular Forms and Fermat’s Last Theorem, International Press, Cambridge, MA, 1995. Zbl0860.13012MR1363497
  21. 21. W. R. Mann, Local level-raising for GL n , PhD thesis, Harvard University (2001). MR2702054
  22. 22. W. R. Mann, Local level-raising on GL(n), partial preprint. MR2702054
  23. 23. D. Mauger, Algèbres de Hecke quasi-ordinaires universelles, Ann. Sci. Éc. Norm. Supér., IV. Sér.37 (2004), p. 171-222 Zbl1196.11074MR2061780
  24. 24. B. Mazur, An introduction to the deformation theory of Galois representations, in Modular Forms and Fermat’s Last Theorem (Boston, MA, 1995), Springer, New York, 1997. Zbl0901.11015MR1638481
  25. 25. C. Moeglin, J.-L. Waldspurger, Le spectre résiduel de GL(n), Ann. Sci. Éc. Norm. Supér., IV. Sér.22 (1989), p. 605-674 Zbl0696.10023MR1026752
  26. 26. M. Nori, On subgroups of GL n ( 𝔽 p ) , Invent. Math.88 (1987), p. 257-275 Zbl0632.20030MR880952
  27. 27. J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of Number Fields, Grundl. Math. Wiss. 323 (1989), Springer, Berlin Zbl0948.11001MR1737196
  28. 28. R. Ramakrishna, On a variation of Mazur’s deformation functor, Compos. Math.87 (1993), p. 269-286 Zbl0910.11023MR1227448
  29. 29. R. Ramakrishna, Deforming Galois representations and the conjectures of Serre and Fontaine–Mazur, Ann. Math.156 (2002), p. 115-154 Zbl1076.11035MR1935843
  30. 30. K. Ribet, Congruence relations between modular forms, in Proceedings of the Warsaw ICM, PWN, Warsaw, 1984. Zbl0575.10024MR804706
  31. 31. A. Roche, Types and Hecke algebras for principal series representations of split reductive p-adic groups, Ann. Sci. Éc. Norm. Supér., IV. Sér.31 (1998), p. 361-413 Zbl0903.22009MR1621409
  32. 32. J.-P. Serre, Abelian l-adic Representations and Elliptic Curves, (1968), Benjamin, New York, Amsterdam Zbl0186.25701MR263823
  33. 33. J.-P. Serre, Sur la semi-simplicité des produits tensoriels de représentations de groupes, Invent. Math.116 (1994), p. 513-530 Zbl0816.20014MR1253203
  34. 34. T. Shintani, On an explicit formula for class-1 “Whittaker functions” on GL n over P-adic fields, Proc. Japan Acad.52 (1976), p. 180-182 Zbl0387.43002MR407208
  35. 35. C. Skinner, A. Wiles, Base change and a problem of Serre, Duke Math. J.107 (2001), p. 15-25 Zbl1016.11017MR1815248
  36. 36. J. Tate, Number theoretic background, in A. Borel and W. Casselman Automorphic Forms, Representations and L-Functions, Proc. Symp. Pure Math., vol. 33(2), Amer. Math. Soc., Providence, RI, 1979. Zbl0422.12007MR546607
  37. 37. R. Taylor, Automorphy for some l-adic lifts of automorphic mod l Galois representations. II, this volume. Zbl1169.11021
  38. 38. J. Tilouine, Deformations of Galois Representations and Hecke Algebras, (2002), Mehta Institute, New Dehli Zbl1009.11033
  39. 39. R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. Math.141 (1995), p. 553-572 Zbl0823.11030MR1333036
  40. 40. M.-F. Vignéras, Représentations l-modulaires d’un groupe réductif p-adique avec l p , Progr. Math. 137 (1996), Birkhäuser, Boston, MA Zbl0859.22001
  41. 41. M.-F. Vignéras, Induced R-representations of p-adic reductive groups, Sel. Math., New Ser.4 (1998), p. 549-623 Zbl0943.22017
  42. 42. A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. Math.141 (1995), p. 443-551 Zbl0823.11029MR1333035

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.