Automorphy for some l-adic lifts of automorphic mod l Galois representations
Laurent Clozel; Michael Harris; Richard Taylor
Publications Mathématiques de l'IHÉS (2008)
- Volume: 108, page 1-181
- ISSN: 0073-8301
Access Full Article
topAbstract
topHow to cite
topClozel, Laurent, Harris, Michael, and Taylor, Richard. "Automorphy for some l-adic lifts of automorphic mod l Galois representations." Publications Mathématiques de l'IHÉS 108 (2008): 1-181. <http://eudml.org/doc/274357>.
@article{Clozel2008,
abstract = {We extend the methods of Wiles and of Taylor and Wiles from GL2 to higher rank unitary groups and establish the automorphy of suitable conjugate self-dual, regular (de Rham with distinct Hodge–Tate numbers), minimally ramified, l-adic lifts of certain automorphic mod l Galois representations of any dimension. We also make a conjecture about the structure of mod l automorphic forms on definite unitary groups, which would generalise a lemma of Ihara for GL2. Following Wiles’ method we show that this conjecture implies that our automorphy lifting theorem could be extended to cover lifts that are not minimally ramified.},
author = {Clozel, Laurent, Harris, Michael, Taylor, Richard},
journal = {Publications Mathématiques de l'IHÉS},
language = {eng},
pages = {1-181},
publisher = {Springer-Verlag},
title = {Automorphy for some l-adic lifts of automorphic mod l Galois representations},
url = {http://eudml.org/doc/274357},
volume = {108},
year = {2008},
}
TY - JOUR
AU - Clozel, Laurent
AU - Harris, Michael
AU - Taylor, Richard
TI - Automorphy for some l-adic lifts of automorphic mod l Galois representations
JO - Publications Mathématiques de l'IHÉS
PY - 2008
PB - Springer-Verlag
VL - 108
SP - 1
EP - 181
AB - We extend the methods of Wiles and of Taylor and Wiles from GL2 to higher rank unitary groups and establish the automorphy of suitable conjugate self-dual, regular (de Rham with distinct Hodge–Tate numbers), minimally ramified, l-adic lifts of certain automorphic mod l Galois representations of any dimension. We also make a conjecture about the structure of mod l automorphic forms on definite unitary groups, which would generalise a lemma of Ihara for GL2. Following Wiles’ method we show that this conjecture implies that our automorphy lifting theorem could be extended to cover lifts that are not minimally ramified.
LA - eng
UR - http://eudml.org/doc/274357
ER -
References
top- 1. J. Arthur, L. Clozel, Simple Algebras, Base Change and the Advanced Theory of the Trace Formula, Ann. Math. Stud. 120 (1989), Princeton University Press, Princeton, NJ Zbl0682.10022MR1007299
- 2. I.N. Bernstein, A.V. Zelevinsky, Induced representations of reductive -adic groups. I, Ann. Sci. Éc. Norm. Supér., IV. Sér.10 (1977), p. 441-472 Zbl0412.22015MR579172
- 3. J. Carayol, Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet, in: p-adic Monodromy and the Birch and Swinnerton–Dyer Conjecture, Contemp. Math. 165 (1994), Amer. Math. Soc., Providence, RI Zbl0812.11036
- 4. L. Clozel, On the cohomology of Kottwitz’s arithmetic varieties, Duke Math. J.72 (1993), p. 757-795 Zbl0974.11019MR1253624
- 5. L. Clozel, J.-P. Labesse, Changement de base pour les représentations cohomologiques des certaines groupes unitaires, appendix to “Cohomologie, stabilisation et changement de base”, Astérisque257 (1999), p. 120-132 MR1695940
- 6. E. Cline, B. Parshall, L. Scott, Cohomology of finite groups of Lie type I, Publ. Math., Inst. Hautes Étud. Sci.45 (1975), p. 169-191 Zbl0412.20044MR399283
- 7. C. Curtis, I. Reiner, Methods of Representation Theory I, (1981), Wiley Interscience, New York Zbl0616.20001MR632548
- 8. H. Darmon, F. Diamond, and R. Taylor, Fermat’s last theorem, in Current Developments in Mathematics, International Press, Cambridge, MA, 1994. Zbl0877.11035MR1474977
- 9. F. Diamond, The Taylor–Wiles construction and multiplicity one, Invent. Math.128 (1997), p. 379-391 Zbl0916.11037MR1440309
- 10. M. Dickinson, A criterion for existence of a universal deformation ring, appendix to “Deformations of Galois representations” by F. Gouvea, in Arithmetic Algebraic Geometry (Park City, UT, 1999), Amer. Math. Soc., Providence, RI, 2001.
- 11. F. Diamond, R. Taylor, Nonoptimal levels of mod l modular representations, Invent. Math.115 (1994), p. 435-462 Zbl0847.11025MR1262939
- 12. J.-M. Fontaine, G. Laffaille, Construction de représentations p-adiques, Ann. Sci. Éc. Norm. Supér., IV. Sér.15 (1982), p. 547-608 Zbl0579.14037MR707328
- 13. M. Harris, R. Taylor, The Geometry and Cohomology of Some Simple Shimura Varieties, Ann. Math. Stud. 151 (2001), Princeton University Press, Princeton, NJ Zbl1036.11027MR1876802
- 14. M. Harris, N. Shepherd-Barron, and R. Taylor, A family of hypersurfaces and potential automorphy, to appear in Ann. Math. Zbl1263.11061
- 15. Y. Ihara, On modular curves over finite fields, in Discrete Subgroups of Lie Groups and Applications to Moduli, Oxford University Press, Bombay, 1975. Zbl0343.14007MR399105
- 16. H. Jacquet, J. Shalika, On Euler products and the classification of automorphic forms I, Amer. J. Math.103 (1981), p. 499-558 Zbl0491.10020MR618323
- 17. H. Jacquet, J. Shalika, On Euler products and the classification of automorphic forms II, Amer. J. Math.103 (1981), p. 777-815 Zbl0491.10020MR623137
- 18. H. Jacquet, I. Piatetski-Shapiro, J. Shalika, Conducteur des représentations du groupe linéaire, Math. Ann.256 (1981), p. 199-214 Zbl0443.22013MR620708
- 19. X. Lazarus, Module universel en caractéristique lgt;0 associé à un caractère de l’algèbre de Hecke de GL(n) sur un corps p-adique, avec , J. Algebra213 (1999), p. 662-686 Zbl0920.22010MR1673473
- 20. H. Lenstra, Complete intersections and Gorenstein rings, in Elliptic Curves, Modular Forms and Fermat’s Last Theorem, International Press, Cambridge, MA, 1995. Zbl0860.13012MR1363497
- 21. W. R. Mann, Local level-raising for GL n , PhD thesis, Harvard University (2001). MR2702054
- 22. W. R. Mann, Local level-raising on GL(n), partial preprint. MR2702054
- 23. D. Mauger, Algèbres de Hecke quasi-ordinaires universelles, Ann. Sci. Éc. Norm. Supér., IV. Sér.37 (2004), p. 171-222 Zbl1196.11074MR2061780
- 24. B. Mazur, An introduction to the deformation theory of Galois representations, in Modular Forms and Fermat’s Last Theorem (Boston, MA, 1995), Springer, New York, 1997. Zbl0901.11015MR1638481
- 25. C. Moeglin, J.-L. Waldspurger, Le spectre résiduel de GL(n), Ann. Sci. Éc. Norm. Supér., IV. Sér.22 (1989), p. 605-674 Zbl0696.10023MR1026752
- 26. M. Nori, On subgroups of , Invent. Math.88 (1987), p. 257-275 Zbl0632.20030MR880952
- 27. J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of Number Fields, Grundl. Math. Wiss. 323 (1989), Springer, Berlin Zbl0948.11001MR1737196
- 28. R. Ramakrishna, On a variation of Mazur’s deformation functor, Compos. Math.87 (1993), p. 269-286 Zbl0910.11023MR1227448
- 29. R. Ramakrishna, Deforming Galois representations and the conjectures of Serre and Fontaine–Mazur, Ann. Math.156 (2002), p. 115-154 Zbl1076.11035MR1935843
- 30. K. Ribet, Congruence relations between modular forms, in Proceedings of the Warsaw ICM, PWN, Warsaw, 1984. Zbl0575.10024MR804706
- 31. A. Roche, Types and Hecke algebras for principal series representations of split reductive p-adic groups, Ann. Sci. Éc. Norm. Supér., IV. Sér.31 (1998), p. 361-413 Zbl0903.22009MR1621409
- 32. J.-P. Serre, Abelian l-adic Representations and Elliptic Curves, (1968), Benjamin, New York, Amsterdam Zbl0186.25701MR263823
- 33. J.-P. Serre, Sur la semi-simplicité des produits tensoriels de représentations de groupes, Invent. Math.116 (1994), p. 513-530 Zbl0816.20014MR1253203
- 34. T. Shintani, On an explicit formula for class-1 “Whittaker functions” on GL n over P-adic fields, Proc. Japan Acad.52 (1976), p. 180-182 Zbl0387.43002MR407208
- 35. C. Skinner, A. Wiles, Base change and a problem of Serre, Duke Math. J.107 (2001), p. 15-25 Zbl1016.11017MR1815248
- 36. J. Tate, Number theoretic background, in A. Borel and W. Casselman Automorphic Forms, Representations and L-Functions, Proc. Symp. Pure Math., vol. 33(2), Amer. Math. Soc., Providence, RI, 1979. Zbl0422.12007MR546607
- 37. R. Taylor, Automorphy for some l-adic lifts of automorphic mod l Galois representations. II, this volume. Zbl1169.11021
- 38. J. Tilouine, Deformations of Galois Representations and Hecke Algebras, (2002), Mehta Institute, New Dehli Zbl1009.11033
- 39. R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. Math.141 (1995), p. 553-572 Zbl0823.11030MR1333036
- 40. M.-F. Vignéras, Représentations l-modulaires d’un groupe réductif p-adique avec , Progr. Math. 137 (1996), Birkhäuser, Boston, MA Zbl0859.22001
- 41. M.-F. Vignéras, Induced R-representations of p-adic reductive groups, Sel. Math., New Ser.4 (1998), p. 549-623 Zbl0943.22017
- 42. A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. Math.141 (1995), p. 443-551 Zbl0823.11029MR1333035
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.