On the infinite fern of Galois representations of unitary type
Annales scientifiques de l'École Normale Supérieure (2011)
- Volume: 44, Issue: 6, page 963-1019
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topChenevier, Gaëtan. "On the infinite fern of Galois representations of unitary type." Annales scientifiques de l'École Normale Supérieure 44.6 (2011): 963-1019. <http://eudml.org/doc/272123>.
@article{Chenevier2011,
abstract = {Let $E$ be a CM number field, $p$ an odd prime totally split in $E$, and let $X$ be the $p$-adic analytic space parameterizing the isomorphism classes of $3$-dimensional semisimple $p$-adic representations of $\{\rm Gal\}(\overline\{E\}/E)$ satisfying a selfduality condition “of type $\{\rm U\}(3)$”. We study an analogue of the infinite fern of Gouvêa-Mazur in this context and show that each irreducible component of the Zariski-closure of the modular points in $X$ has dimension at least $3[E:\mathbb \{Q\}]$. As important steps, and in any rank, we prove that any first order deformation of a generic enough crystalline representation of $\{\rm Gal\}(\overline\{\mathbb \{Q\}\}_p/\mathbb \{Q\}_p)$ is a linear combination of trianguline deformations, and that unitary eigenvarieties are étale over weight space at the non-critical classical points. As another application, we give a surjectivity criterion for the localization at $p$ of theadjoint$^\{\prime \}$Selmer group (Pronounce “adjoint primed Selmer group.”) of a $p$-adic Galois representation attached to a cuspidal cohomological automorphic representation of $\{\rm GL\}_n(\mathbb \{A\}_E)$ of type $\{\rm U\}(n)$ (for any $n$).},
author = {Chenevier, Gaëtan},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Galois representation; automorphic form; unitary group; trianguline; infinite fern; eigenvariety; Selmer group},
language = {eng},
number = {6},
pages = {963-1019},
publisher = {Société mathématique de France},
title = {On the infinite fern of Galois representations of unitary type},
url = {http://eudml.org/doc/272123},
volume = {44},
year = {2011},
}
TY - JOUR
AU - Chenevier, Gaëtan
TI - On the infinite fern of Galois representations of unitary type
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2011
PB - Société mathématique de France
VL - 44
IS - 6
SP - 963
EP - 1019
AB - Let $E$ be a CM number field, $p$ an odd prime totally split in $E$, and let $X$ be the $p$-adic analytic space parameterizing the isomorphism classes of $3$-dimensional semisimple $p$-adic representations of ${\rm Gal}(\overline{E}/E)$ satisfying a selfduality condition “of type ${\rm U}(3)$”. We study an analogue of the infinite fern of Gouvêa-Mazur in this context and show that each irreducible component of the Zariski-closure of the modular points in $X$ has dimension at least $3[E:\mathbb {Q}]$. As important steps, and in any rank, we prove that any first order deformation of a generic enough crystalline representation of ${\rm Gal}(\overline{\mathbb {Q}}_p/\mathbb {Q}_p)$ is a linear combination of trianguline deformations, and that unitary eigenvarieties are étale over weight space at the non-critical classical points. As another application, we give a surjectivity criterion for the localization at $p$ of theadjoint$^{\prime }$Selmer group (Pronounce “adjoint primed Selmer group.”) of a $p$-adic Galois representation attached to a cuspidal cohomological automorphic representation of ${\rm GL}_n(\mathbb {A}_E)$ of type ${\rm U}(n)$ (for any $n$).
LA - eng
KW - Galois representation; automorphic form; unitary group; trianguline; infinite fern; eigenvariety; Selmer group
UR - http://eudml.org/doc/272123
ER -
References
top- [1] J. Bellaïche & G. Chenevier, Families of Galois representations and Selmer groups, Astérisque 324 (2009). Zbl1192.11035MR2656025
- [2] J. Bellaïche & G. Chenevier, The sign of Galois representations attached to automorphic forms for unitary groups, Compositio Math.147 (2011), 1137–1352. Zbl1259.11058MR2834723
- [3] L. Berger, Représentations -adiques et équations différentielles, Invent. Math.148 (2002), 219–284. Zbl1113.14016MR1906150
- [4] L. Berger, Équations différentielles -adiques et -modules filtrés, Astérisque319 (2008), 13–38. Zbl1168.11019MR2493215
- [5] S. Bloch & K. Kato, -functions and Tamagawa numbers of motives, in The Grothendieck Festschrift, Vol. I, Progr. Math. 86, Birkhäuser, 1990, 333–400. Zbl0768.14001MR1086888
- [6] G. Böckle, On the density of modular points in universal deformation spaces, Amer. J. Math.123 (2001), 985–1007. Zbl0984.11025MR1854117
- [7] S. Bosch, U. Güntzer & R. Remmert, Non-Archimedean analysis, Grund. Math. Wiss. 261, Springer, 1984. Zbl0539.14017MR746961
- [8] K. Buzzard, Eigenvarieties, in -functions and Galois representations, London Math. Soc. Lecture Note Ser. 320, Cambridge Univ. Press, 2007, 59–120. Zbl1230.11054MR2392353
- [9] A. Caraiani, Local-global compatibility and the action of monodromy on nearby cycles, preprint arXiv:1010.2188. Zbl06095601MR2972460
- [10] G. Chenevier, Familles -adiques de formes automorphes pour , J. reine angew. Math. 570 (2004), 143–217. Zbl1093.11036MR2075765
- [11] G. Chenevier, Variétés de Hecke des groupes unitaires et représentations galoisiennes, cours Peccot au Collège de France, http://www.math.polytechnique.fr/~chenevier/courspeccot.html, 2008.
- [12] G. Chenevier, Une application des variétés de Hecke des groupes unitaires, in [24], 2009.
- [13] G. Chenevier, The -adic analytic space of pseudo-characters of a profinite group, and pseudo-representations over arbitrary rings, preprint arXiv:0809.0415. Zbl06589914
- [14] G. Chenevier & M. Harris, Construction of automorphic Galois representations II, in [24], 2009. Zbl1310.11062
- [15] L. Clozel et al. (éds.), On the stabilization of the trace formula, I, International Press, 2010. MR2742611
- [16] L. Clozel, M. Harris & R. Taylor, Automorphy for some -adic lifts of automorphic mod Galois representations, Publ. Math. I.H.É.S. 108 (2008), 1–181. Zbl1169.11020MR2470687
- [17] H. Cohen & K. Belabas, PARI/GP, http://pari.math.u-bordeaux.fr/.
- [18] R. Coleman & B. Mazur, The eigencurve, in Galois representations in arithmetic algebraic geometry (Durham, 1996), London Math. Soc. Lecture Note Ser. 254, Cambridge Univ. Press, 1998, 1–113. Zbl0932.11030MR1696469
- [19] P. Colmez, Représentations triangulines de dimension 2, Astérisque319 (2008), 213–258. Zbl1168.11022MR2493219
- [20] B. Conrad, Irreducible components of rigid spaces, Ann. Inst. Fourier (Grenoble) 49 (1999), 473–541. Zbl0928.32011MR1697371
- [21] J. E. Cremona, Algorithms for modular elliptic curves, second éd., Cambridge Univ. Press, 1997. Zbl0758.14042MR1628193
- [22] M. Flach, A finiteness theorem for the symmetric square of an elliptic curve, Invent. Math.109 (1992), 307–327. Zbl0781.14022MR1172693
- [23] J.-M. Fontaine & B. Perrin-Riou, Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions , in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math. 55, Amer. Math. Soc., 1994, 599–706. Zbl0821.14013MR1265546
- [24] M. Harris et al., On the stabilization of the trace formula, book project of the Paris G.R.F.A. Seminar, Vol. I and II, http://fa.institut.math.jussieu.fr/node/29.
- [25] H. Jacquet & J. A. Shalika, On Euler products and the classification of automorphic forms. II, Amer. J. Math. 103 (1981), 777–815. Zbl0491.10020MR623137
- [26] O. T. R. Jones, An analogue of the BGG resolution for locally analytic principal series, J. Number Theory131 (2011), 1616–1640. Zbl1219.22017MR2802138
- [27] A. J. de Jong, Crystalline Dieudonné module theory via formal and rigid geometry, Publ. Math. I.H.É.S. 82 (1995), 5–96. Zbl0864.14009MR1383213
- [28] H. H. Kim & F. Shahidi, Functorial products for and the symmetric cube for , Ann. of Math.155 (2002), 837–893. Zbl1040.11036MR1923967
- [29] M. Kisin, Overconvergent modular forms and the Fontaine-Mazur conjecture, Invent. Math.153 (2003), 373–454. Zbl1045.11029MR1992017
- [30] J.-P. Labesse, Changement de base CM et séries discrètes, in [15, p. 429–470]GRFAbook1, 2009. MR2856380
- [31] R. Liu, Cohomology and duality for -modules over the Robba ring, Int. Math. Res. Not. 2008 (2008), art. ID rnm 150, 32. Zbl1248.11093MR2416996
- [32] B. Mazur, Deforming Galois representations, in Galois groups over (Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ. 16, Springer, 1989, 385–437. Zbl0714.11076MR1012172
- [33] B. Mazur, An “infinite fern” in the universal deformation space of Galois representations, Collect. Math.48 (1997), 155–193. Zbl0865.11046MR1464022
- [34] J. S. Milne, Arithmetic duality theorems, Perspectives in Math. 1, Academic Press Inc., 1986. Zbl0613.14019MR881804
- [35] J. D. Rogawski, Automorphic representations of unitary groups in three variables, Ann. of Math. Studies 123, Princeton Univ. Press, 1990. Zbl0724.11031MR1081540
- [36] M. Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc.130 (1968), 208–222. Zbl0167.49503MR217093
- [37] J-P. Serre, Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures), in Séminaire de théorie des nombres Delange-Pisot-Poitou, 11, 1969–70, exp. no 19, 1–15. Zbl0214.48403
- [38] S. W. Shin, Galois representations arising from some compact Shimura varieties, to appear in Annals of math. Zbl1269.11053MR2800722
- [39] T. Weston, Unobstructed modular deformation problems, Amer. J. Math.126 (2004), 1237–1252. Zbl1071.11027MR2102394
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.