On the infinite fern of Galois representations of unitary type

Gaëtan Chenevier

Annales scientifiques de l'École Normale Supérieure (2011)

  • Volume: 44, Issue: 6, page 963-1019
  • ISSN: 0012-9593

Abstract

top
Let E be a CM number field, p an odd prime totally split in  E , and let  X be the p -adic analytic space parameterizing the isomorphism classes of  3 -dimensional semisimple p -adic representations of  Gal ( E ¯ / E ) satisfying a selfduality condition “of type U ( 3 ) ”. We study an analogue of the infinite fern of Gouvêa-Mazur in this context and show that each irreducible component of the Zariski-closure of the modular points in  X has dimension at least 3 [ E : ] . As important steps, and in any rank, we prove that any first order deformation of a generic enough crystalline representation of  Gal ( ¯ p / p ) is a linear combination of trianguline deformations, and that unitary eigenvarieties are étale over weight space at the non-critical classical points. As another application, we give a surjectivity criterion for the localization at  p of theadjoint ' Selmer group (Pronounce “adjoint primed Selmer group.”) of a p -adic Galois representation attached to a cuspidal cohomological automorphic representation of  GL n ( 𝔸 E ) of type U ( n ) (for any  n ).

How to cite

top

Chenevier, Gaëtan. "On the infinite fern of Galois representations of unitary type." Annales scientifiques de l'École Normale Supérieure 44.6 (2011): 963-1019. <http://eudml.org/doc/272123>.

@article{Chenevier2011,
abstract = {Let $E$ be a CM number field, $p$ an odd prime totally split in $E$, and let $X$ be the $p$-adic analytic space parameterizing the isomorphism classes of $3$-dimensional semisimple $p$-adic representations of $\{\rm Gal\}(\overline\{E\}/E)$ satisfying a selfduality condition “of type $\{\rm U\}(3)$”. We study an analogue of the infinite fern of Gouvêa-Mazur in this context and show that each irreducible component of the Zariski-closure of the modular points in $X$ has dimension at least $3[E:\mathbb \{Q\}]$. As important steps, and in any rank, we prove that any first order deformation of a generic enough crystalline representation of $\{\rm Gal\}(\overline\{\mathbb \{Q\}\}_p/\mathbb \{Q\}_p)$ is a linear combination of trianguline deformations, and that unitary eigenvarieties are étale over weight space at the non-critical classical points. As another application, we give a surjectivity criterion for the localization at $p$ of theadjoint$^\{\prime \}$Selmer group (Pronounce “adjoint primed Selmer group.”) of a $p$-adic Galois representation attached to a cuspidal cohomological automorphic representation of $\{\rm GL\}_n(\mathbb \{A\}_E)$ of type $\{\rm U\}(n)$ (for any $n$).},
author = {Chenevier, Gaëtan},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Galois representation; automorphic form; unitary group; trianguline; infinite fern; eigenvariety; Selmer group},
language = {eng},
number = {6},
pages = {963-1019},
publisher = {Société mathématique de France},
title = {On the infinite fern of Galois representations of unitary type},
url = {http://eudml.org/doc/272123},
volume = {44},
year = {2011},
}

TY - JOUR
AU - Chenevier, Gaëtan
TI - On the infinite fern of Galois representations of unitary type
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2011
PB - Société mathématique de France
VL - 44
IS - 6
SP - 963
EP - 1019
AB - Let $E$ be a CM number field, $p$ an odd prime totally split in $E$, and let $X$ be the $p$-adic analytic space parameterizing the isomorphism classes of $3$-dimensional semisimple $p$-adic representations of ${\rm Gal}(\overline{E}/E)$ satisfying a selfduality condition “of type ${\rm U}(3)$”. We study an analogue of the infinite fern of Gouvêa-Mazur in this context and show that each irreducible component of the Zariski-closure of the modular points in $X$ has dimension at least $3[E:\mathbb {Q}]$. As important steps, and in any rank, we prove that any first order deformation of a generic enough crystalline representation of ${\rm Gal}(\overline{\mathbb {Q}}_p/\mathbb {Q}_p)$ is a linear combination of trianguline deformations, and that unitary eigenvarieties are étale over weight space at the non-critical classical points. As another application, we give a surjectivity criterion for the localization at $p$ of theadjoint$^{\prime }$Selmer group (Pronounce “adjoint primed Selmer group.”) of a $p$-adic Galois representation attached to a cuspidal cohomological automorphic representation of ${\rm GL}_n(\mathbb {A}_E)$ of type ${\rm U}(n)$ (for any $n$).
LA - eng
KW - Galois representation; automorphic form; unitary group; trianguline; infinite fern; eigenvariety; Selmer group
UR - http://eudml.org/doc/272123
ER -

References

top
  1. [1] J. Bellaïche & G. Chenevier, Families of Galois representations and Selmer groups, Astérisque 324 (2009). Zbl1192.11035MR2656025
  2. [2] J. Bellaïche & G. Chenevier, The sign of Galois representations attached to automorphic forms for unitary groups, Compositio Math.147 (2011), 1137–1352. Zbl1259.11058MR2834723
  3. [3] L. Berger, Représentations p -adiques et équations différentielles, Invent. Math.148 (2002), 219–284. Zbl1113.14016MR1906150
  4. [4] L. Berger, Équations différentielles p -adiques et ( φ , N ) -modules filtrés, Astérisque319 (2008), 13–38. Zbl1168.11019MR2493215
  5. [5] S. Bloch & K. Kato, L -functions and Tamagawa numbers of motives, in The Grothendieck Festschrift, Vol. I, Progr. Math. 86, Birkhäuser, 1990, 333–400. Zbl0768.14001MR1086888
  6. [6] G. Böckle, On the density of modular points in universal deformation spaces, Amer. J. Math.123 (2001), 985–1007. Zbl0984.11025MR1854117
  7. [7] S. Bosch, U. Güntzer & R. Remmert, Non-Archimedean analysis, Grund. Math. Wiss. 261, Springer, 1984. Zbl0539.14017MR746961
  8. [8] K. Buzzard, Eigenvarieties, in L -functions and Galois representations, London Math. Soc. Lecture Note Ser. 320, Cambridge Univ. Press, 2007, 59–120. Zbl1230.11054MR2392353
  9. [9] A. Caraiani, Local-global compatibility and the action of monodromy on nearby cycles, preprint arXiv:1010.2188. Zbl06095601MR2972460
  10. [10] G. Chenevier, Familles p -adiques de formes automorphes pour GL n , J. reine angew. Math. 570 (2004), 143–217. Zbl1093.11036MR2075765
  11. [11] G. Chenevier, Variétés de Hecke des groupes unitaires et représentations galoisiennes, cours Peccot au Collège de France, http://www.math.polytechnique.fr/~chenevier/courspeccot.html, 2008. 
  12. [12] G. Chenevier, Une application des variétés de Hecke des groupes unitaires, in [24], 2009. 
  13. [13] G. Chenevier, The p -adic analytic space of pseudo-characters of a profinite group, and pseudo-representations over arbitrary rings, preprint arXiv:0809.0415. Zbl06589914
  14. [14] G. Chenevier & M. Harris, Construction of automorphic Galois representations II, in [24], 2009. Zbl1310.11062
  15. [15] L. Clozel et al. (éds.), On the stabilization of the trace formula, I, International Press, 2010. MR2742611
  16. [16] L. Clozel, M. Harris & R. Taylor, Automorphy for some l -adic lifts of automorphic mod l Galois representations, Publ. Math. I.H.É.S. 108 (2008), 1–181. Zbl1169.11020MR2470687
  17. [17] H. Cohen & K. Belabas, PARI/GP, http://pari.math.u-bordeaux.fr/. 
  18. [18] R. Coleman & B. Mazur, The eigencurve, in Galois representations in arithmetic algebraic geometry (Durham, 1996), London Math. Soc. Lecture Note Ser. 254, Cambridge Univ. Press, 1998, 1–113. Zbl0932.11030MR1696469
  19. [19] P. Colmez, Représentations triangulines de dimension 2, Astérisque319 (2008), 213–258. Zbl1168.11022MR2493219
  20. [20] B. Conrad, Irreducible components of rigid spaces, Ann. Inst. Fourier (Grenoble) 49 (1999), 473–541. Zbl0928.32011MR1697371
  21. [21] J. E. Cremona, Algorithms for modular elliptic curves, second éd., Cambridge Univ. Press, 1997. Zbl0758.14042MR1628193
  22. [22] M. Flach, A finiteness theorem for the symmetric square of an elliptic curve, Invent. Math.109 (1992), 307–327. Zbl0781.14022MR1172693
  23. [23] J.-M. Fontaine & B. Perrin-Riou, Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions L , in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math. 55, Amer. Math. Soc., 1994, 599–706. Zbl0821.14013MR1265546
  24. [24] M. Harris et al., On the stabilization of the trace formula, book project of the Paris G.R.F.A. Seminar, Vol. I and II, http://fa.institut.math.jussieu.fr/node/29. 
  25. [25] H. Jacquet & J. A. Shalika, On Euler products and the classification of automorphic forms. II, Amer. J. Math. 103 (1981), 777–815. Zbl0491.10020MR623137
  26. [26] O. T. R. Jones, An analogue of the BGG resolution for locally analytic principal series, J. Number Theory131 (2011), 1616–1640. Zbl1219.22017MR2802138
  27. [27] A. J. de Jong, Crystalline Dieudonné module theory via formal and rigid geometry, Publ. Math. I.H.É.S. 82 (1995), 5–96. Zbl0864.14009MR1383213
  28. [28] H. H. Kim & F. Shahidi, Functorial products for GL 2 × GL 3 and the symmetric cube for GL 2 , Ann. of Math.155 (2002), 837–893. Zbl1040.11036MR1923967
  29. [29] M. Kisin, Overconvergent modular forms and the Fontaine-Mazur conjecture, Invent. Math.153 (2003), 373–454. Zbl1045.11029MR1992017
  30. [30] J.-P. Labesse, Changement de base CM et séries discrètes, in [15, p. 429–470]GRFAbook1, 2009. MR2856380
  31. [31] R. Liu, Cohomology and duality for ( φ , Γ ) -modules over the Robba ring, Int. Math. Res. Not. 2008 (2008), art. ID rnm 150, 32. Zbl1248.11093MR2416996
  32. [32] B. Mazur, Deforming Galois representations, in Galois groups over 𝐐 (Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ. 16, Springer, 1989, 385–437. Zbl0714.11076MR1012172
  33. [33] B. Mazur, An “infinite fern” in the universal deformation space of Galois representations, Collect. Math.48 (1997), 155–193. Zbl0865.11046MR1464022
  34. [34] J. S. Milne, Arithmetic duality theorems, Perspectives in Math. 1, Academic Press Inc., 1986. Zbl0613.14019MR881804
  35. [35] J. D. Rogawski, Automorphic representations of unitary groups in three variables, Ann. of Math. Studies 123, Princeton Univ. Press, 1990. Zbl0724.11031MR1081540
  36. [36] M. Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc.130 (1968), 208–222. Zbl0167.49503MR217093
  37. [37] J-P. Serre, Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures), in Séminaire de théorie des nombres Delange-Pisot-Poitou, 11, 1969–70, exp. no 19, 1–15. Zbl0214.48403
  38. [38] S. W. Shin, Galois representations arising from some compact Shimura varieties, to appear in Annals of math. Zbl1269.11053MR2800722
  39. [39] T. Weston, Unobstructed modular deformation problems, Amer. J. Math.126 (2004), 1237–1252. Zbl1071.11027MR2102394

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.