Algèbres de Hecke quasi-ordinaires universelles

David Mauger

Annales scientifiques de l'École Normale Supérieure (2004)

  • Volume: 37, Issue: 2, page 171-222
  • ISSN: 0012-9593

How to cite

top

Mauger, David. "Algèbres de Hecke quasi-ordinaires universelles." Annales scientifiques de l'École Normale Supérieure 37.2 (2004): 171-222. <http://eudml.org/doc/82629>.

@article{Mauger2004,
author = {Mauger, David},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {connected reductive group; -adic interpolation of set of spaces of topological automorphic forms; construction of $p$-adic families of Hecke eigensystems; nearly-ordinarity assumption},
language = {fre},
number = {2},
pages = {171-222},
publisher = {Elsevier},
title = {Algèbres de Hecke quasi-ordinaires universelles},
url = {http://eudml.org/doc/82629},
volume = {37},
year = {2004},
}

TY - JOUR
AU - Mauger, David
TI - Algèbres de Hecke quasi-ordinaires universelles
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2004
PB - Elsevier
VL - 37
IS - 2
SP - 171
EP - 222
LA - fre
KW - connected reductive group; -adic interpolation of set of spaces of topological automorphic forms; construction of $p$-adic families of Hecke eigensystems; nearly-ordinarity assumption
UR - http://eudml.org/doc/82629
ER -

References

top
  1. [1] Ash A., Stevens G., p-adic deformations of cohomology classes of subgroups of GL(n,Z), Collectanea Math.48 (1–2) (1997) 1-30. Zbl0866.20038MR1464013
  2. [2] Bass H., Milnor J., Serre J.-P., Solution of the congruence subgroup problem for SLn (n≥3) and Sp2n (n≥2), Publ. Math. IHÉS33 (1967) 59-137. Zbl0174.05203
  3. [3] Blasius D., Rogawski J.D., Motives for Hilbert modular forms, Invent. Math.114 (1) (1993) 55-87. Zbl0829.11028MR1235020
  4. [4] Borel A., Introduction aux groupes arithmétiques, Hermann, 1969. Zbl0186.33202MR244260
  5. [5] Borel A., Serre J.-P., Corners and arithmetic groups, Comment. Math. Helv.48 (1974) 436-491. Zbl0274.22011MR387495
  6. [6] Borel A., Tits J., Groupes réductifs, Publ. Math. IHÉS27 (1965) 55-151, avec compléments dans 41 (1972) 253–276. Zbl0145.17402MR207712
  7. [7] Bourbaki N., Groupes et algèbres de Lie, Masson, 1971. 
  8. [8] Bourbaki N., Topologie générale, Masson, 1974. 
  9. [9] Bourbaki N., Algèbre commutative, Masson, 1983. 
  10. [10] Bruhat F., Tits J., Groupes réductifs sur un corps local I II et III, Publ. Math. IHÉS 4160 (1972) 5-252, 5–184, 1984 , J. Fac. Sci. Univ. Tokyo34 (1987) 671-698. Zbl0254.14017MR927605
  11. [11] Brumer A., On the units of algebraic number fields, Mathematika14 (1967) 121-124. Zbl0171.01105MR220694
  12. [12] Buecker K., On the control theorem for the symplectic group, Compositio Math.113 (1) (1998) 91-115. Zbl0923.11076MR1638202
  13. [13] Deligne P., Variétés de Shimura : Interprétation modulaire, et techniques de construction de modèles canoniques, in: Borel A., Casselman W. (Eds.), Automorphic Forms, Representations, and L-functions, Proc. Symp. in Pure Math., vol. 33, 1979, pp. 247-289. Zbl0437.14012MR546620
  14. [14] Demazure M., Gabriel P., Groupes Algébriques – Tome I, Masson/North-Holland, 1970. Zbl0203.23401
  15. [15] Demazure M., Grothendieck A., Schémas en groupes, Lecture Notes in Math., vol. 151, 152, 153, Springer-Verlag, 1962–1964. Zbl0207.51401
  16. [16] Godement R., Théorie des faisceaux, Hermann, 1958. MR102797
  17. [17] Gordon B.B., Canonical models of Picard modular surfaces, in: Langlands R.P., Ramakrishnan D. (Eds.), The ζ-functions of Picard Modular Surfaces, Proceedings, vol. 13, Les Publications CRM, 1992, pp. 1-29. Zbl0756.14011
  18. [18] Hida H., On p-adic Hecke algebras for GL(2) over totally real fields, Ann. of Math.128 (1988) 295-384. Zbl0658.10034MR960949
  19. [19] Hida H., Control theorems of p-nearly ordinary cohomology groups for SL(n), Bull. Soc. Math. France123 (1995) 425-475. Zbl0852.11023MR1373742
  20. [20] Hida H., Automorphic induction and Leopoldt type conjectures for GL(n), Asian J. Math.2 (4) (1998) 667-710, Mikio Sato: a great Japanese mathematician of the twentieth century. Zbl0963.11027MR1734126
  21. [21] Jantzen J.C., Representations of Algebraic Groups, Pure and Applied Math., vol. 131, Academic Press, 1987. Zbl0654.20039MR899071
  22. [22] Kuga M., Parry W., Sah C.H., Group cohomology and Hecke operators, in: Manifolds and Lie Groups (Notre Dame, Ind., 1980), Birkhäuser, 1981, pp. 223-266. Zbl0479.10019MR642860
  23. [23] J.-S. Li, J. Schwermer. On the Eisenstein cohomology of arithmetic groups, Duke Math. J., à paraître. Zbl1057.11031MR2060025
  24. [24] Miyake T., Modular Forms, Springer-Verlag, 1989. Zbl0701.11014MR1021004
  25. [25] Platonov V., Rapinchuk A., Algebraic Groups and Number Theory, Pure and Applied Math., vol. 139, Academic Press, 1994. Zbl0841.20046MR1278263
  26. [26] Raynaud M., Anneaux locaux henséliens, Lecture Notes in Math., vol. 169, Springer-Verlag, 1970. Zbl0203.05102MR277519
  27. [27] Saper L.D., L-modules and micro-support, Prépublication disponible sur , math.RT/0112251. 
  28. [28] Saper L.D., L-modules and the conjecture of Rapoport and Goresky–MacPherson, in: Tilouine, Carayol, Harris, Vigneras (Eds.), Formes automorphes, Actes du Semestre du Centre É. Borel, IHP, Paris février–juillet 2000, 2001, Astérisque. Soc. Math. France, à paraître. Disponible sur , math.RT/0112250. Zbl1083.11033
  29. [29] Satake I., Theory of spherical functions on reductive algebraic groups over p-adic fields, Publ. Math. IHÉS18 (1963) 5-69. Zbl0122.28501MR195863
  30. [30] Schneider P., Stuhler U., Representation theory and sheaves on the Bruhat–Tits building, Publ. Math. IHÉS85 (1997) 97-191. Zbl0892.22012MR1471867
  31. [31] Serre J.-P., Corps locaux, Publ. Math. de l'Univ. de Nancago, vol. 8, Hermann, 1968. Zbl0423.12017MR354618
  32. [32] Serre J.-P., Cohomologie galoisienne, Lecture Notes in Math., vol. 5, Springer-Verlag, 1994. Zbl0812.12002MR1324577
  33. [33] Shimura G., Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press, 1971. Zbl0221.10029MR314766
  34. [34] Tilouine J., Urban É., Several-variable p-adic families of Siegel–Hilbert cusp eigensystems and their Galois representations, Ann. Sci. Éc. Norm. Sup.32 (1999) 499-574. Zbl0991.11016MR1693583
  35. [35] Tits J., Buildings of Spherical Type and Finite BN-Pairs, Lecture Notes in Math., vol. 386, Springer-Verlag, 1974. Zbl0295.20047MR470099

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.