Limit theorems for some functionals with heavy tails of a discrete time Markov chain
Patrick Cattiaux; Mawaki Manou-Abi
ESAIM: Probability and Statistics (2014)
- Volume: 18, page 468-482
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer, Sur les inégalités de Sobolev logarithmiques. Vol. 10 of Panoramas et Synthèses. Société Mathématique de France, Paris (2000). Zbl0982.46026
- [2] D. Bakry, P. Cattiaux and A. Guillin, Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Func. Anal.254 (2008) 727–759. Zbl1146.60058MR2381160
- [3] K. Bartkiewicz, A. Jakubowski, T. Mikosch and O. Wintenberger, Stable limits for sums of dependent infinite variance random variables. Probab. Theory Relat. Fields150 (2011) 337–372. Zbl1231.60017MR2824860
- [4] B. Basrak, D. Krizmanic and J. Segers, A functional limit theorem for dependent sequences with infinite variance stable limits. Ann. Probab.40 (2012) 2008–2033. Zbl1295.60041MR3025708
- [5] P. Cattiaux, A pathwise approach of some classical inequalities. Potential Analysis20 (2004) 361–394. Zbl1050.47041MR2032116
- [6] P. Cattiaux, D. Chafai and A. Guillin, Central Limit Theorem for additive functionals of ergodic Markov Diffusions. ALEA, Lat. Am. J. Probab. Math. Stat. 9 (2012) 337–382. Zbl1277.60047MR3069369
- [7] P. Cattiaux and A. Guillin, Deviation bounds for additive functionals of Markov processes. ESAIM: PS 12 (2008) 12–29. Zbl1183.60011MR2367991
- [8] P. Cattiaux and A. Guillin, Trends to equilibrium in total variation distance. Ann. Inst. Henri Poincaré. Prob. Stat.45 (2009) 117–145. Zbl1202.26028MR2500231
- [9] P. Cattiaux, A. Guillin and C. Roberto, Poincaré inequality and the ?p convergence of semi-groups. Elec. Commun. Prob. 15 (2010) 270–280. Zbl1223.26037MR2661206
- [10] P. Cattiaux, A. Guillin and P.A. Zitt, Poincaré inequalities and hitting times. Ann. Inst. Henri Poincaré. Prob. Stat.49 (2013) 95–118. Zbl1270.26018MR3060149
- [11] Mu-Fa Chen, Eigenvalues, inequalities, and ergodic theory. Probab. Appl. (New York). Springer-Verlag London Ltd., London (2005). Zbl1079.60005MR2105651
- [12] R.A. Davis, Stable limits for partial sums of dependent random variables. Ann. Probab.11 (1983) 262–269. Zbl0511.60021MR690127
- [13] M. Denker and A. Jakubowski, Stable limit theorems for strongly mixing sequences. Stat. Probab. Lett.8 (1989) 477–483. Zbl0694.60017MR1040810
- [14] A. Jakubowski, Minimal conditions in p-stable limit theorem. Stochastic Process. Appl.44 (1993) 291–327. Zbl0771.60015MR1200412
- [15] M. Jara, T. Komorowski and S. Olla, Limit theorems for additive functionals of a Markov chain. Ann. Appl. Probab.19 (2009) 2270–2300. Zbl1232.60018MR2588245
- [16] D. Krizmanic, Functional limit theorems for weakly dependent regularly varying time series. Ph.D. thesis (2010). Available at http://www.math.uniri.hr/˜dkrizmanic/DKthesis.pdf.
- [17] S.P. Meyn and R.L. Tweedie, Markov chains and stochastic stability. Commun. Control Eng. Series. Springer-Verlag London Ltd., London (1993). Zbl0925.60001MR1287609
- [18] F. Merlevède, M. Peligrad and S. Utev, Recent advances in invariance principles for stationary sequences. Probab. Surv.3 (2006) 1–36. Zbl1189.60078MR2206313
- [19] L. Miclo, On hyperboundedness and spectrum of Markov operators. Preprint, available on hal-00777146 (2013). Zbl1312.47016
- [20] M. Röckner and F.Y. Wang, Weak Poincaré inequalities and L2-convergence rates of Markov semi-groups. J. Funct. Anal.185 (2001) 564–603. Zbl1009.47028
- [21] M. Tyran-Kaminska, Convergence to Lévy stable processes under some weak dependence conditions. Stochastic Process. Appl.120 (2010) 1629–1650. Zbl1198.60018MR2673968
- [22] E. Van Doorn and P. Schrdner, Geometric ergodicity and quasi-stationnarity in discrete time Birth-Death processes. J. Austral. Math. Soc. Ser. B37 (1995) 121–144. Zbl0856.60080MR1359177