Trends to equilibrium in total variation distance

Patrick Cattiaux; Arnaud Guillin

Annales de l'I.H.P. Probabilités et statistiques (2009)

  • Volume: 45, Issue: 1, page 117-145
  • ISSN: 0246-0203

Abstract

top
This paper presents different approaches, based on functional inequalities, to study the speed of convergence in total variation distance of ergodic diffusion processes with initial law satisfying a given integrability condition. To this end, we give a general upper bound “à la Pinsker” enabling us to study our problem firstly via usual functional inequalities (Poincaré inequality, weak Poincaré,…) and truncation procedure, and secondly through the introduction of new functional inequalities ψ . These ψ -inequalities are characterized through measure-capacity conditions andF-Sobolev inequalities. A direct study of the decay of Hellinger distance is also proposed. Finally we show how a dynamic approach based on reversing the role of the semi-group and the invariant measure can lead to interesting bounds.

How to cite

top

Cattiaux, Patrick, and Guillin, Arnaud. "Trends to equilibrium in total variation distance." Annales de l'I.H.P. Probabilités et statistiques 45.1 (2009): 117-145. <http://eudml.org/doc/78011>.

@article{Cattiaux2009,
abstract = {This paper presents different approaches, based on functional inequalities, to study the speed of convergence in total variation distance of ergodic diffusion processes with initial law satisfying a given integrability condition. To this end, we give a general upper bound “à la Pinsker” enabling us to study our problem firstly via usual functional inequalities (Poincaré inequality, weak Poincaré,…) and truncation procedure, and secondly through the introduction of new functional inequalities $\mathcal \{I\}_\{\psi \}$. These $\mathcal \{I\}_\{\psi \}$-inequalities are characterized through measure-capacity conditions andF-Sobolev inequalities. A direct study of the decay of Hellinger distance is also proposed. Finally we show how a dynamic approach based on reversing the role of the semi-group and the invariant measure can lead to interesting bounds.},
author = {Cattiaux, Patrick, Guillin, Arnaud},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {total variation; diffusion processes; speed of convergence; Poincaré inequality; logarithmic Sobolev inequality; F-Sobolev inequality},
language = {eng},
number = {1},
pages = {117-145},
publisher = {Gauthier-Villars},
title = {Trends to equilibrium in total variation distance},
url = {http://eudml.org/doc/78011},
volume = {45},
year = {2009},
}

TY - JOUR
AU - Cattiaux, Patrick
AU - Guillin, Arnaud
TI - Trends to equilibrium in total variation distance
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 1
SP - 117
EP - 145
AB - This paper presents different approaches, based on functional inequalities, to study the speed of convergence in total variation distance of ergodic diffusion processes with initial law satisfying a given integrability condition. To this end, we give a general upper bound “à la Pinsker” enabling us to study our problem firstly via usual functional inequalities (Poincaré inequality, weak Poincaré,…) and truncation procedure, and secondly through the introduction of new functional inequalities $\mathcal {I}_{\psi }$. These $\mathcal {I}_{\psi }$-inequalities are characterized through measure-capacity conditions andF-Sobolev inequalities. A direct study of the decay of Hellinger distance is also proposed. Finally we show how a dynamic approach based on reversing the role of the semi-group and the invariant measure can lead to interesting bounds.
LA - eng
KW - total variation; diffusion processes; speed of convergence; Poincaré inequality; logarithmic Sobolev inequality; F-Sobolev inequality
UR - http://eudml.org/doc/78011
ER -

References

top
  1. [1] C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer. Sur les inégalités de Sobolev logarithmiques. Panoramas et Synthèses 10. Société Mathématique de France, Paris, 2000. Zbl0982.46026MR1845806
  2. [2] D. Bakry. L’hypercontractivité et son utilisation en théorie des semigroupes. In Lectures on Probability theory. École d’été de Probabilités de St-Flour 19921–114. Lecture Notes in Math. 1581. Springer, Berlin, 1994. Zbl0856.47026MR1307413
  3. [3] D. Bakry, P. Cattiaux and A. Guillin. Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal. 254 (2008) 727–759. Zbl1146.60058MR2381160
  4. [4] D. Bakry, M. Ledoux and F. Y. Wang. Perturbations of inequalities under growth conditions. J. Math. Pures Appl. 87 (2007) 394–407. Zbl1120.60070MR2317340
  5. [5] F. Barthe, P. Cattiaux and C. Roberto. Concentration for independent random variables with heavy tails. AMRX 2005 (2005) 39–60. Zbl1094.60010MR2173316
  6. [6] F. Barthe, P. Cattiaux and C. Roberto. Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry. Rev. Math. Iberoamericana 22 (2006) 993–1066. Zbl1118.26014MR2320410
  7. [7] F. Barthe, P. Cattiaux and C. Roberto. Isoperimetry between exponential and Gaussian. Electron. J. Probab. 12 (2007) 1212–1237. Zbl1132.26005MR2346509
  8. [8] F. Barthe and C. Roberto. Sobolev inequalities for probability measures on the real line. Studia Math. 159 (2003) 481–497. Zbl1072.60008MR2052235
  9. [9] L. Bertini and B. Zegarlinski. Coercive inequalities for Gibbs measures. J. Funct. Anal. 162 (1999) 257–286. Zbl0932.60061MR1682059
  10. [10] P. Cattiaux. A pathwise approach of some classical inequalities. Potential Anal. 20 (2004) 361–394. Zbl1050.47041MR2032116
  11. [11] P. Cattiaux. Hypercontractivity for perturbed diffusion semi-groups. Ann. Fac. Sc. Toulouse 14 (2005) 609–628. Zbl1089.60520MR2188585
  12. [12] P. Cattiaux, I. Gentil and A. Guillin. Weak logarithmic-Sobolev inequalities and entropic convergence. Probab. Theory Related Fields 139 (2007) 563–603. Zbl1130.26010MR2322708
  13. [13] P. Cattiaux and A. Guillin. Deviation bounds for additive functionals of Markov processes. ESAIM Probab. Statist. 12 (2008) 12–29. Zbl1183.60011MR2367991
  14. [14] P. Cattiaux and A. Guillin. On quadratic transportation cost inequalities. J. Math. Pures Appl. 88 (2006) 341–361. Zbl1118.58017MR2257848
  15. [15] P. Cattiaux and A. Guillin. Trends to equilibrium in total variation distance. Available at ArXiv.math.PR/0703451, 2007. Stochastic Process. Appl. To appear. Zbl1202.26028MR2500231
  16. [16] E. B. Davies. Heat Kernels and Spectral Theory. Cambridge Univ. Press, 1989. Zbl0699.35006MR990239
  17. [17] P. Del Moral, M. Ledoux and L. Miclo. On contraction properties of Markov kernels. Probab. Theory Related Fields 126 (2003) 395–420. Zbl1030.60060MR1992499
  18. [18] J. Dolbeault, I. Gentil, A. Guillin and F.Y. Wang. Lq-functional inequalities and weighted porous media equations. Potential Anal. 28 (2008) 35–59. Zbl1148.26018MR2366398
  19. [19] R. Douc, G. Fort and A. Guillin. Subgeometric rates of convergence of f-ergodic strong Markov processes. Preprint. Available at ArXiv.math.ST/0605791, 2006. Zbl1163.60034MR2499863
  20. [20] N. Down, S. P. Meyn and R. L. Tweedie. Exponential and uniform ergodicity of Markov processes. Ann. Probab. 23 (1995) 1671–1691. Zbl0852.60075MR1379163
  21. [21] G. Fort and G. O. Roberts. Subgeometric ergodicity of strong Markov processes. Ann. Appl. Probab. 15 (2005) 1565–1589. Zbl1072.60057MR2134115
  22. [22] O. Kavian, G. Kerkyacharian and B. Roynette. Some remarks on ultracontractivity. J. Funct. Anal. 111 (1993) 155–196. Zbl0807.47027MR1200640
  23. [23] R. Latała and K. Oleszkiewicz. Between Sobolev and Poincaré. In Geometric Aspects of Functional Analysis 147–168. Lecture Notes in Math. 1745. Springer, Berlin, 2000. Zbl0986.60017MR1796718
  24. [24] Y. H. Mao. Strong ergodicity for Markov processes by coupling. J. Appl. Probab. 39 (2002) 839–852. Zbl1019.60077MR1938175
  25. [25] V. G. Maz’ja. Sobolev Spaces. Springer, Berlin, 1985. (Translated from the Russian by T. O. Shaposhnikova.) Zbl0692.46023MR817985
  26. [26] S. P. Meyn and R. L. Tweedie. Stability of markovian processes II: continuous-time processes and sampled chains. Adv. Appl. Probab. 25 (1993) 487–517. Zbl0781.60052MR1234294
  27. [27] S. P. Meyn and R. L. Tweedie. Stability of markovian processes III: Foster–Lyapunov criteria for continuous-time processes. Adv. Appl. Probab. 25 (1993) 518–548. Zbl0781.60053MR1234295
  28. [28] C. Roberto and B. Zegarlinski. Orlicz–Sobolev inequalities for sub-Gaussian measures and ergodicity of Markov semi-groups. J. Funct. Anal. 243 (2007) 28–66. Zbl1120.28013MR2289793
  29. [29] M. Röckner and F. Y. Wang. Weak Poincaré inequalities and L2-convergence rates of Markov semigroups. J. Funct. Anal. 185 (2001) 564–603. Zbl1009.47028MR1856277
  30. [30] A. Y. Veretennikov. On polynomial mixing bounds for stochastic differential equations. Stochastic Process. Appl. 70 (1997) 115–127. Zbl0911.60042MR1472961
  31. [31] F. Y. Wang. Functional inequalities for empty essential spectrum. J. Funct. Anal. 170 (2000) 219–245. Zbl0946.58010MR1736202
  32. [32] F. Y. Wang. Functional Inequalities, Markov Processes and Spectral Theory. Science Press, Beijing, 2004. MR2040788
  33. [33] F. Y. Wang. Probability distance inequalities on Riemannian manifolds and path spaces. J. Funct. Anal. 206 (2004) 167–190. Zbl1048.58013MR2024350
  34. [34] F. Y. Wang. A generalization of Poincaré and log-Sobolev inequalities. Potential Anal. 22 (2005) 1–15. Zbl1068.47051MR2127729
  35. [35] F. Y. Wang. L1-convergence and hypercontractivity of diffusion semi-groups on manifolds. Studia Math. 162 (2004) 219–227. Zbl1084.58014MR2047652
  36. [36] P. A. Zitt. Annealing diffusion in a slowly growing potential. Stochastic Process. Appl. 118 (2008) 76–119. Zbl1144.60048MR2376253

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.