Trends to equilibrium in total variation distance
Patrick Cattiaux; Arnaud Guillin
Annales de l'I.H.P. Probabilités et statistiques (2009)
- Volume: 45, Issue: 1, page 117-145
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer. Sur les inégalités de Sobolev logarithmiques. Panoramas et Synthèses 10. Société Mathématique de France, Paris, 2000. Zbl0982.46026MR1845806
- [2] D. Bakry. L’hypercontractivité et son utilisation en théorie des semigroupes. In Lectures on Probability theory. École d’été de Probabilités de St-Flour 19921–114. Lecture Notes in Math. 1581. Springer, Berlin, 1994. Zbl0856.47026MR1307413
- [3] D. Bakry, P. Cattiaux and A. Guillin. Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal. 254 (2008) 727–759. Zbl1146.60058MR2381160
- [4] D. Bakry, M. Ledoux and F. Y. Wang. Perturbations of inequalities under growth conditions. J. Math. Pures Appl. 87 (2007) 394–407. Zbl1120.60070MR2317340
- [5] F. Barthe, P. Cattiaux and C. Roberto. Concentration for independent random variables with heavy tails. AMRX 2005 (2005) 39–60. Zbl1094.60010MR2173316
- [6] F. Barthe, P. Cattiaux and C. Roberto. Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry. Rev. Math. Iberoamericana 22 (2006) 993–1066. Zbl1118.26014MR2320410
- [7] F. Barthe, P. Cattiaux and C. Roberto. Isoperimetry between exponential and Gaussian. Electron. J. Probab. 12 (2007) 1212–1237. Zbl1132.26005MR2346509
- [8] F. Barthe and C. Roberto. Sobolev inequalities for probability measures on the real line. Studia Math. 159 (2003) 481–497. Zbl1072.60008MR2052235
- [9] L. Bertini and B. Zegarlinski. Coercive inequalities for Gibbs measures. J. Funct. Anal. 162 (1999) 257–286. Zbl0932.60061MR1682059
- [10] P. Cattiaux. A pathwise approach of some classical inequalities. Potential Anal. 20 (2004) 361–394. Zbl1050.47041MR2032116
- [11] P. Cattiaux. Hypercontractivity for perturbed diffusion semi-groups. Ann. Fac. Sc. Toulouse 14 (2005) 609–628. Zbl1089.60520MR2188585
- [12] P. Cattiaux, I. Gentil and A. Guillin. Weak logarithmic-Sobolev inequalities and entropic convergence. Probab. Theory Related Fields 139 (2007) 563–603. Zbl1130.26010MR2322708
- [13] P. Cattiaux and A. Guillin. Deviation bounds for additive functionals of Markov processes. ESAIM Probab. Statist. 12 (2008) 12–29. Zbl1183.60011MR2367991
- [14] P. Cattiaux and A. Guillin. On quadratic transportation cost inequalities. J. Math. Pures Appl. 88 (2006) 341–361. Zbl1118.58017MR2257848
- [15] P. Cattiaux and A. Guillin. Trends to equilibrium in total variation distance. Available at ArXiv.math.PR/0703451, 2007. Stochastic Process. Appl. To appear. Zbl1202.26028MR2500231
- [16] E. B. Davies. Heat Kernels and Spectral Theory. Cambridge Univ. Press, 1989. Zbl0699.35006MR990239
- [17] P. Del Moral, M. Ledoux and L. Miclo. On contraction properties of Markov kernels. Probab. Theory Related Fields 126 (2003) 395–420. Zbl1030.60060MR1992499
- [18] J. Dolbeault, I. Gentil, A. Guillin and F.Y. Wang. Lq-functional inequalities and weighted porous media equations. Potential Anal. 28 (2008) 35–59. Zbl1148.26018MR2366398
- [19] R. Douc, G. Fort and A. Guillin. Subgeometric rates of convergence of f-ergodic strong Markov processes. Preprint. Available at ArXiv.math.ST/0605791, 2006. Zbl1163.60034MR2499863
- [20] N. Down, S. P. Meyn and R. L. Tweedie. Exponential and uniform ergodicity of Markov processes. Ann. Probab. 23 (1995) 1671–1691. Zbl0852.60075MR1379163
- [21] G. Fort and G. O. Roberts. Subgeometric ergodicity of strong Markov processes. Ann. Appl. Probab. 15 (2005) 1565–1589. Zbl1072.60057MR2134115
- [22] O. Kavian, G. Kerkyacharian and B. Roynette. Some remarks on ultracontractivity. J. Funct. Anal. 111 (1993) 155–196. Zbl0807.47027MR1200640
- [23] R. Latała and K. Oleszkiewicz. Between Sobolev and Poincaré. In Geometric Aspects of Functional Analysis 147–168. Lecture Notes in Math. 1745. Springer, Berlin, 2000. Zbl0986.60017MR1796718
- [24] Y. H. Mao. Strong ergodicity for Markov processes by coupling. J. Appl. Probab. 39 (2002) 839–852. Zbl1019.60077MR1938175
- [25] V. G. Maz’ja. Sobolev Spaces. Springer, Berlin, 1985. (Translated from the Russian by T. O. Shaposhnikova.) Zbl0692.46023MR817985
- [26] S. P. Meyn and R. L. Tweedie. Stability of markovian processes II: continuous-time processes and sampled chains. Adv. Appl. Probab. 25 (1993) 487–517. Zbl0781.60052MR1234294
- [27] S. P. Meyn and R. L. Tweedie. Stability of markovian processes III: Foster–Lyapunov criteria for continuous-time processes. Adv. Appl. Probab. 25 (1993) 518–548. Zbl0781.60053MR1234295
- [28] C. Roberto and B. Zegarlinski. Orlicz–Sobolev inequalities for sub-Gaussian measures and ergodicity of Markov semi-groups. J. Funct. Anal. 243 (2007) 28–66. Zbl1120.28013MR2289793
- [29] M. Röckner and F. Y. Wang. Weak Poincaré inequalities and L2-convergence rates of Markov semigroups. J. Funct. Anal. 185 (2001) 564–603. Zbl1009.47028MR1856277
- [30] A. Y. Veretennikov. On polynomial mixing bounds for stochastic differential equations. Stochastic Process. Appl. 70 (1997) 115–127. Zbl0911.60042MR1472961
- [31] F. Y. Wang. Functional inequalities for empty essential spectrum. J. Funct. Anal. 170 (2000) 219–245. Zbl0946.58010MR1736202
- [32] F. Y. Wang. Functional Inequalities, Markov Processes and Spectral Theory. Science Press, Beijing, 2004. MR2040788
- [33] F. Y. Wang. Probability distance inequalities on Riemannian manifolds and path spaces. J. Funct. Anal. 206 (2004) 167–190. Zbl1048.58013MR2024350
- [34] F. Y. Wang. A generalization of Poincaré and log-Sobolev inequalities. Potential Anal. 22 (2005) 1–15. Zbl1068.47051MR2127729
- [35] F. Y. Wang. L1-convergence and hypercontractivity of diffusion semi-groups on manifolds. Studia Math. 162 (2004) 219–227. Zbl1084.58014MR2047652
- [36] P. A. Zitt. Annealing diffusion in a slowly growing potential. Stochastic Process. Appl. 118 (2008) 76–119. Zbl1144.60048MR2376253