Déformations isomonodromiques des singularités régulières

B. Malgrange

Recherche Coopérative sur Programme n°25 (1983)

  • Volume: 31, page 1-26

How to cite

top

Malgrange, B.. "Déformations isomonodromiques des singularités régulières." Recherche Coopérative sur Programme n°25 31 (1983): 1-26. <http://eudml.org/doc/274422>.

@article{Malgrange1983,
author = {Malgrange, B.},
journal = {Recherche Coopérative sur Programme n°25},
keywords = {regular singularity; isomonodromic deformation; Painleve property; Riemann-Hilbert problem},
language = {fre},
pages = {1-26},
publisher = {Institut de Recherche Mathématique Avancée - Université Louis Pasteur},
title = {Déformations isomonodromiques des singularités régulières},
url = {http://eudml.org/doc/274422},
volume = {31},
year = {1983},
}

TY - JOUR
AU - Malgrange, B.
TI - Déformations isomonodromiques des singularités régulières
JO - Recherche Coopérative sur Programme n°25
PY - 1983
PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
VL - 31
SP - 1
EP - 26
LA - fre
KW - regular singularity; isomonodromic deformation; Painleve property; Riemann-Hilbert problem
UR - http://eudml.org/doc/274422
ER -

References

top
  1. [A-S] M. F. Atiyah, I. M. Singer, The index of elliptic operators III, Ann. Math.87 (1968), pp. 484-530. Zbl0164.24001MR236950
  2. [B] L. Boutet de Monvel, Problème de Riemann-Hilbert III, Exposé n° 5, Séminaire ENS (1979-80). Zbl0556.32017
  3. [D] P. De Ligne, Equations différentielles à points singuliers réguliers, Springer Lect. Notes n° 163, Springer (1970). Zbl0244.14004
  4. [F-M] R.H. Fox, L. Neuwirth, The Braid Groups, Math. Scand.10 (1962), pp. 119-126. Zbl0117.41101MR150755
  5. [G] R. Gerard, Le problème de Riemann-Hilbert sur une variété analytique complexe, Ann. Inst. Fourier2 (1969), pp. 1-32. Zbl0176.08701MR281946
  6. [I] I. Ince, Ordinary differential equations, 1926. Dover, New-York1956. Zbl0063.02971JFM53.0399.07
  7. [J-M] M. Jimbo, T. Miwa, Monodromy preserving deformations of linear ordinary differential equations II. R. I. M. S. Preprint 327 (1980). Zbl1194.34169MR631470
  8. [M] T. Miwa, Painlevé property of monodromy preserving equations and the analyticity of τ function. Publ. R. I. M. S.Kyoto University17-2 (1981), pp. 703-721. Zbl0605.34005MR642657
  9. [S-J-M] M. Sato, T. Miwa, M. Jimbo, Aspects of holonomie quantum fields, SpringerLect. Notes in Physics, n° 126 (1980), pp. 429-491. Zbl0451.34008MR579762

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.