Comments on the Links Between s u ( 3 ) Modular Invariants, Simple Factors in the Jacobian of Fermat Curves, and Rational Triangular Billiards

M. Bauer; A. Coste; C. Itzykson; P. Ruelle

Recherche Coopérative sur Programme n°25 (1997)

  • Volume: 48, Issue: 2, page 1-56

How to cite

top

Bauer, M., et al. "Comments on the Links Between $su(3)$ Modular Invariants, Simple Factors in the Jacobian of Fermat Curves, and Rational Triangular Billiards." Recherche Coopérative sur Programme n°25 48.2 (1997): 1-56. <http://eudml.org/doc/274903>.

@article{Bauer1997,
author = {Bauer, M., Coste, A., Itzykson, C., Ruelle, P.},
journal = {Recherche Coopérative sur Programme n°25},
keywords = {affine Lie algebras; abelian varieties; modular invariant; partition function; rational conformal field theory; Jacobian of a Fermat curve; triangulated surfaces; Riemann surface},
language = {eng},
number = {2},
pages = {1-56},
publisher = {Institut de Recherche Mathématique Avancée - Université Louis Pasteur},
title = {Comments on the Links Between $su(3)$ Modular Invariants, Simple Factors in the Jacobian of Fermat Curves, and Rational Triangular Billiards},
url = {http://eudml.org/doc/274903},
volume = {48},
year = {1997},
}

TY - JOUR
AU - Bauer, M.
AU - Coste, A.
AU - Itzykson, C.
AU - Ruelle, P.
TI - Comments on the Links Between $su(3)$ Modular Invariants, Simple Factors in the Jacobian of Fermat Curves, and Rational Triangular Billiards
JO - Recherche Coopérative sur Programme n°25
PY - 1997
PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
VL - 48
IS - 2
SP - 1
EP - 56
LA - eng
KW - affine Lie algebras; abelian varieties; modular invariant; partition function; rational conformal field theory; Jacobian of a Fermat curve; triangulated surfaces; Riemann surface
UR - http://eudml.org/doc/274903
ER -

References

top
  1. [1] A. Cappelli, C. Itzykson and J.-B. Zuber, The A-D-E classification of minimal and A 1 ( 1 ) conformal invariant theories, Commun. Math. Phys.113 (1987) 1-26. Zbl0639.17008MR918402
  2. A. Kato, Classification of modular invariant partition functions in two dimensions, Mod. Phys. Lett. A2 (1987) 585-600. MR906000
  3. [2] T. Gannon, The Classification of affine su(3) modular invariant partition functions, Commun. Math. Phys.161 (1994) 233-264. Zbl0806.17031MR1266482
  4. [3] T. Gannon, WZW commutants, lattices, and level-one partition functions, Nucl. Phys. B396 (1993) 708-736. MR1218796
  5. [4] P. Ruelle, E. Thiran and J. Weyers, Implications of an arithmetical symmetry of the commutant for modular invariants, Nucl. Phys. B402 (1993) 693-708. Zbl1043.81698MR1236194
  6. [5] A. Coste and T. Gannon, Remarks on Galois symmetry in rational conformal field theories, Phys. Lett. B323 (1994) 316-321. MR1266785
  7. [6] N. Koblitz and D. Rohrlich, Simple factors in the Jacobian of a Fermat curve, Can. J. Math.XXX (1978) 1183-1205. Zbl0399.14023MR511556
  8. [7] E. Aurell and C. Itzykson, Rational billiards and algebraic curves, J. Geom. and Phys.5 (1988) 191-208. Zbl0688.70017MR1029427
  9. [8] Contributions by P. Cohen, J. Wolfart, M. Bauer and C. Itzykson in The Grothendieck theory of dessins d'enfants, L. Schneps ed., LMSLNS200, Cambridge Univ. Press. 
  10. [9] V.G. Kac, Infinite dimensional Lie algebras, 3rd edition, Cambridge University Press, Cambridge1990. Zbl0925.17021MR1104219
  11. [10] C. Itzykson and J.-M. Drouffe, Théorie statistique des champs, editions du CNRS, Paris1989. 
  12. [11] V.G. Kac and M. Wakimoto, Modular and conformal invariance constraints in representation theory of affine algebras, Adv. Math.70 (1988) 156-236. Zbl0661.17016MR954660
  13. [12] E. Witten, Non-Abelian bosonization in two dimensions, Commun. Math. Phys.92 (1984) 455-472. Zbl0536.58012
  14. [13] P. Goddard and D. Olive, Kac-Moody and Virasoro algebras in relation to quantum physics, Int. J. Mod. Phys. A1 (1983) 303-414. Zbl0631.17012MR864165
  15. [14] G. Moore and N. Seiberg, Naturality in conformal field theory, Nucl. Phys. B313 (1989) 16-40. MR984288
  16. [15] J. Cardy, The operator content of two-dimensional conformally invariant theories, Nucl. Phys. B270 (1986) 186-204. Zbl0689.17016MR845940
  17. [16] W. Nahm, Lie group exponents and SU(2) current algebras, Commun. Math. Phys.118 (1988) 171-176. Zbl0652.17012MR954680
  18. [17] P. Di Francesco and J.-B. Zuber, SU(N) lattice integrable models associated with graphs, Nucl. Phys. B338 (1990) 602-646. MR1063590
  19. [18] T. Gannon, The level two and three modular invariants of SU(n), preprint (November 1995). Zbl0871.17019MR1434240
  20. [19] T. Gannon, Towards a classification of s u ( 2 ) . . . s u ( 2 ) modular invariant partition functions, J. Math. Phys.36 (1995) 675-706. Zbl0833.17025MR1312071
  21. [20] T. Gannon, P. Ruelle and M. Walton, Automorphism modular invariants of current algebras, Commun. Math. Phys.179 (1996) 121-156. Zbl0897.17023MR1395219
  22. [21] T. Gannon, Kac-Peterson, Perron-Frobenius, and the classification of conformal field theories, preprint (q-alg 9510026). 
  23. [22] M. Bauer and C. Itzykson, Modular transformations of SU(N) affine characters and their commutant, Commun. Math. Phys.127 (1990) 617-636. Zbl0703.17017MR1040899
  24. [23] P. Ruelle, Dimension of the commutant for the SU(N) affine algebras, Commun.Math. Phys.133 (1990) 181-196. Zbl0716.17029MR1071241
  25. [24] E. Buffenoir, A. Coste, J. Lascoux, P. Degiovanni and A. Buhot, Precise study of some number fields and Galois actions occurring in conformal field theory, Ann. Inst. Poincaré, Theor. Phys.63 (1995) 41-79. Zbl0868.12002MR1354439
  26. [25] C. Vafa, Toward classification of conformal theories, Phys. Lett.206B (1988) 421-426. MR944264
  27. G. Anderson and G. Moore, Rationality in conformal field theory, Commun. Math. Phys.117 (1988) 441-450. Zbl0647.17012MR953832
  28. [26] J. de Boer and J. Goeree, Markov traces and II1 factors in conformal field theory, Commun. Math. Phys.139 (1991) 267-304. Zbl0760.57002MR1120140
  29. [27] P. Ruelle, E. Thiran and J. Weyers, Modular invariants for affine S U ^ ( 3 ) theories at prime heights, Commun. Math. Phys.133 (1990) 305-322. Zbl0718.17023MR1090427
  30. [28] J. Fuchs, B. Gato-Rivera, B. Schellekens and C. Schweigert, Modular invariants and fusion rule automorphisms from Galois theory, Phys. Lett. B334 (1994) 113-120. MR1290075
  31. [29] J. Fuchs, B. Schellekens and C. Schweigert, Galois modular invariants of WZW models, Nucl. Phys. B437 (1995) 667-694. Zbl1052.81530MR1321335
  32. 30] J.-B. Bost, Les Houches lectures "Introduction to compact Riemann surfaces, Jacobians and Abelian varieties", in From Number Theory to Physics, edited by M. Waldschmidt, P. Moussa, J.-M. Luck and C. Itzykson, Springer1990. Zbl0815.14018MR1221101
  33. [31] H.P.F. Swinnerton-Dyer, Analytic theory of Abelian varieties, Cambridge University Press, Cambridge1974. Zbl0299.14021MR366934
  34. [32] S. Lang, Introduction to algebraic and Abelian functions, GTM89, Springer1982. Zbl0513.14024MR681120
  35. [33] N. Aoki, Simple factors of the Jacobian of a Fermat curve and the Picard number of a product of Fermat curves, Amer. J. Math.113 (1991) 779-833. Zbl0752.14021MR1129293
  36. [34] D. Rohrlich, appendix to B. Gross, On the periods of Abelian integrals and a formula of Chowla and Seiberg, Invent. Math.45 (1978) 193-211. Zbl0418.14023MR480542
  37. [35] A. Weil, Sur les périodes d'intégrales abéliennes, Commun. Pure and Appl. Math.XXIX (1976) 813-819. Zbl0342.14020MR422164
  38. [36] S. Lang, Complex multiplication, Springer1983. Zbl0536.14029MR713612
  39. [37] G. Shimura and Y. Taniyama, Complex multiplication of Abelian varieties and its applications to number theory, Publ. Math. Soc. Jap., no. 6, 1961. Zbl0112.03502MR125113
  40. [38] N. Koblitz, Gamma function identities and elliptic differentials on Fermat curves, Duke Math. J.45 (1978) 87-99. Zbl0376.14014MR476752
  41. [39] A. Grothendick, Esquisse d'un programme. Zbl0901.14001
  42. [40] A.W. Knapp, Elliptic curves, Princeton Univ. Press, Princeton1992. Zbl0804.14013MR1193029
  43. [41] Arithmetic and Geometry of Fermat CurvesProceedings of the Algebraic Geometry Seminar, Singapore (1987). 
  44. [42] P.J. Richens and M.V. Berry, Pseudo-integrable systems in classical and quantum mechanics, Physica2D (1981) 495-512. Zbl1194.37150MR625449
  45. [43] D. Gepner, E. Witten, String theory on group manifolds, Nucl. Phys. B278 (1986) 493-549. MR862896
  46. [44] R.C. Gunning, Lectures on modular formsAnnals of Mathematics Studies48, Princeton Univ. Press, Princeton1992. Zbl0178.42901MR132828
  47. [45] G.A. Jones and D. Singerman, Complex functions, Cambridge University Press, Cambridge1987. Zbl0608.30001MR890746
  48. [46] C.L. Siegel, Tropics in complex function theory, Vol. II, Wiley & Sons1971. Zbl0719.11028MR1008931
  49. [47] M. Bauer, unpublished. 
  50. [48] D.J. Benson, Polynomial invariants of finite groups, LMSLNS190, Cambridge Univ. Press, Cambridge1993. Zbl0864.13001MR1249931
  51. [49] G.C. Shephard and J.A. Todd, Finite unitary reflection groups, Can. J. Math.VI (1954) 274-304. Zbl0055.14305MR59914

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.