Comments on the Links Between Modular Invariants, Simple Factors in the Jacobian of Fermat Curves, and Rational Triangular Billiards
M. Bauer; A. Coste; C. Itzykson; P. Ruelle
Recherche Coopérative sur Programme n°25 (1997)
- Volume: 48, Issue: 2, page 1-56
Access Full Article
topHow to cite
topBauer, M., et al. "Comments on the Links Between $su(3)$ Modular Invariants, Simple Factors in the Jacobian of Fermat Curves, and Rational Triangular Billiards." Recherche Coopérative sur Programme n°25 48.2 (1997): 1-56. <http://eudml.org/doc/274903>.
@article{Bauer1997,
author = {Bauer, M., Coste, A., Itzykson, C., Ruelle, P.},
journal = {Recherche Coopérative sur Programme n°25},
keywords = {affine Lie algebras; abelian varieties; modular invariant; partition function; rational conformal field theory; Jacobian of a Fermat curve; triangulated surfaces; Riemann surface},
language = {eng},
number = {2},
pages = {1-56},
publisher = {Institut de Recherche Mathématique Avancée - Université Louis Pasteur},
title = {Comments on the Links Between $su(3)$ Modular Invariants, Simple Factors in the Jacobian of Fermat Curves, and Rational Triangular Billiards},
url = {http://eudml.org/doc/274903},
volume = {48},
year = {1997},
}
TY - JOUR
AU - Bauer, M.
AU - Coste, A.
AU - Itzykson, C.
AU - Ruelle, P.
TI - Comments on the Links Between $su(3)$ Modular Invariants, Simple Factors in the Jacobian of Fermat Curves, and Rational Triangular Billiards
JO - Recherche Coopérative sur Programme n°25
PY - 1997
PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
VL - 48
IS - 2
SP - 1
EP - 56
LA - eng
KW - affine Lie algebras; abelian varieties; modular invariant; partition function; rational conformal field theory; Jacobian of a Fermat curve; triangulated surfaces; Riemann surface
UR - http://eudml.org/doc/274903
ER -
References
top- [1] A. Cappelli, C. Itzykson and J.-B. Zuber, The A-D-E classification of minimal and conformal invariant theories, Commun. Math. Phys.113 (1987) 1-26. Zbl0639.17008MR918402
- A. Kato, Classification of modular invariant partition functions in two dimensions, Mod. Phys. Lett. A2 (1987) 585-600. MR906000
- [2] T. Gannon, The Classification of affine su(3) modular invariant partition functions, Commun. Math. Phys.161 (1994) 233-264. Zbl0806.17031MR1266482
- [3] T. Gannon, WZW commutants, lattices, and level-one partition functions, Nucl. Phys. B396 (1993) 708-736. MR1218796
- [4] P. Ruelle, E. Thiran and J. Weyers, Implications of an arithmetical symmetry of the commutant for modular invariants, Nucl. Phys. B402 (1993) 693-708. Zbl1043.81698MR1236194
- [5] A. Coste and T. Gannon, Remarks on Galois symmetry in rational conformal field theories, Phys. Lett. B323 (1994) 316-321. MR1266785
- [6] N. Koblitz and D. Rohrlich, Simple factors in the Jacobian of a Fermat curve, Can. J. Math.XXX (1978) 1183-1205. Zbl0399.14023MR511556
- [7] E. Aurell and C. Itzykson, Rational billiards and algebraic curves, J. Geom. and Phys.5 (1988) 191-208. Zbl0688.70017MR1029427
- [8] Contributions by P. Cohen, J. Wolfart, M. Bauer and C. Itzykson in The Grothendieck theory of dessins d'enfants, L. Schneps ed., LMSLNS200, Cambridge Univ. Press.
- [9] V.G. Kac, Infinite dimensional Lie algebras, 3rd edition, Cambridge University Press, Cambridge1990. Zbl0925.17021MR1104219
- [10] C. Itzykson and J.-M. Drouffe, Théorie statistique des champs, editions du CNRS, Paris1989.
- [11] V.G. Kac and M. Wakimoto, Modular and conformal invariance constraints in representation theory of affine algebras, Adv. Math.70 (1988) 156-236. Zbl0661.17016MR954660
- [12] E. Witten, Non-Abelian bosonization in two dimensions, Commun. Math. Phys.92 (1984) 455-472. Zbl0536.58012
- [13] P. Goddard and D. Olive, Kac-Moody and Virasoro algebras in relation to quantum physics, Int. J. Mod. Phys. A1 (1983) 303-414. Zbl0631.17012MR864165
- [14] G. Moore and N. Seiberg, Naturality in conformal field theory, Nucl. Phys. B313 (1989) 16-40. MR984288
- [15] J. Cardy, The operator content of two-dimensional conformally invariant theories, Nucl. Phys. B270 (1986) 186-204. Zbl0689.17016MR845940
- [16] W. Nahm, Lie group exponents and SU(2) current algebras, Commun. Math. Phys.118 (1988) 171-176. Zbl0652.17012MR954680
- [17] P. Di Francesco and J.-B. Zuber, SU(N) lattice integrable models associated with graphs, Nucl. Phys. B338 (1990) 602-646. MR1063590
- [18] T. Gannon, The level two and three modular invariants of SU(n), preprint (November 1995). Zbl0871.17019MR1434240
- [19] T. Gannon, Towards a classification of modular invariant partition functions, J. Math. Phys.36 (1995) 675-706. Zbl0833.17025MR1312071
- [20] T. Gannon, P. Ruelle and M. Walton, Automorphism modular invariants of current algebras, Commun. Math. Phys.179 (1996) 121-156. Zbl0897.17023MR1395219
- [21] T. Gannon, Kac-Peterson, Perron-Frobenius, and the classification of conformal field theories, preprint (q-alg 9510026).
- [22] M. Bauer and C. Itzykson, Modular transformations of SU(N) affine characters and their commutant, Commun. Math. Phys.127 (1990) 617-636. Zbl0703.17017MR1040899
- [23] P. Ruelle, Dimension of the commutant for the SU(N) affine algebras, Commun.Math. Phys.133 (1990) 181-196. Zbl0716.17029MR1071241
- [24] E. Buffenoir, A. Coste, J. Lascoux, P. Degiovanni and A. Buhot, Precise study of some number fields and Galois actions occurring in conformal field theory, Ann. Inst. Poincaré, Theor. Phys.63 (1995) 41-79. Zbl0868.12002MR1354439
- [25] C. Vafa, Toward classification of conformal theories, Phys. Lett.206B (1988) 421-426. MR944264
- G. Anderson and G. Moore, Rationality in conformal field theory, Commun. Math. Phys.117 (1988) 441-450. Zbl0647.17012MR953832
- [26] J. de Boer and J. Goeree, Markov traces and II1 factors in conformal field theory, Commun. Math. Phys.139 (1991) 267-304. Zbl0760.57002MR1120140
- [27] P. Ruelle, E. Thiran and J. Weyers, Modular invariants for affine theories at prime heights, Commun. Math. Phys.133 (1990) 305-322. Zbl0718.17023MR1090427
- [28] J. Fuchs, B. Gato-Rivera, B. Schellekens and C. Schweigert, Modular invariants and fusion rule automorphisms from Galois theory, Phys. Lett. B334 (1994) 113-120. MR1290075
- [29] J. Fuchs, B. Schellekens and C. Schweigert, Galois modular invariants of WZW models, Nucl. Phys. B437 (1995) 667-694. Zbl1052.81530MR1321335
- 30] J.-B. Bost, Les Houches lectures "Introduction to compact Riemann surfaces, Jacobians and Abelian varieties", in From Number Theory to Physics, edited by M. Waldschmidt, P. Moussa, J.-M. Luck and C. Itzykson, Springer1990. Zbl0815.14018MR1221101
- [31] H.P.F. Swinnerton-Dyer, Analytic theory of Abelian varieties, Cambridge University Press, Cambridge1974. Zbl0299.14021MR366934
- [32] S. Lang, Introduction to algebraic and Abelian functions, GTM89, Springer1982. Zbl0513.14024MR681120
- [33] N. Aoki, Simple factors of the Jacobian of a Fermat curve and the Picard number of a product of Fermat curves, Amer. J. Math.113 (1991) 779-833. Zbl0752.14021MR1129293
- [34] D. Rohrlich, appendix to B. Gross, On the periods of Abelian integrals and a formula of Chowla and Seiberg, Invent. Math.45 (1978) 193-211. Zbl0418.14023MR480542
- [35] A. Weil, Sur les périodes d'intégrales abéliennes, Commun. Pure and Appl. Math.XXIX (1976) 813-819. Zbl0342.14020MR422164
- [36] S. Lang, Complex multiplication, Springer1983. Zbl0536.14029MR713612
- [37] G. Shimura and Y. Taniyama, Complex multiplication of Abelian varieties and its applications to number theory, Publ. Math. Soc. Jap., no. 6, 1961. Zbl0112.03502MR125113
- [38] N. Koblitz, Gamma function identities and elliptic differentials on Fermat curves, Duke Math. J.45 (1978) 87-99. Zbl0376.14014MR476752
- [39] A. Grothendick, Esquisse d'un programme. Zbl0901.14001
- [40] A.W. Knapp, Elliptic curves, Princeton Univ. Press, Princeton1992. Zbl0804.14013MR1193029
- [41] Arithmetic and Geometry of Fermat CurvesProceedings of the Algebraic Geometry Seminar, Singapore (1987).
- [42] P.J. Richens and M.V. Berry, Pseudo-integrable systems in classical and quantum mechanics, Physica2D (1981) 495-512. Zbl1194.37150MR625449
- [43] D. Gepner, E. Witten, String theory on group manifolds, Nucl. Phys. B278 (1986) 493-549. MR862896
- [44] R.C. Gunning, Lectures on modular formsAnnals of Mathematics Studies48, Princeton Univ. Press, Princeton1992. Zbl0178.42901MR132828
- [45] G.A. Jones and D. Singerman, Complex functions, Cambridge University Press, Cambridge1987. Zbl0608.30001MR890746
- [46] C.L. Siegel, Tropics in complex function theory, Vol. II, Wiley & Sons1971. Zbl0719.11028MR1008931
- [47] M. Bauer, unpublished.
- [48] D.J. Benson, Polynomial invariants of finite groups, LMSLNS190, Cambridge Univ. Press, Cambridge1993. Zbl0864.13001MR1249931
- [49] G.C. Shephard and J.A. Todd, Finite unitary reflection groups, Can. J. Math.VI (1954) 274-304. Zbl0055.14305MR59914
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.