Precise study of some number fields and Galois actions occurring in conformal field theory

E. Buffenoir; A. Coste; J. Lascoux; P. Degiovanni; A. Buhot

Annales de l'I.H.P. Physique théorique (1995)

  • Volume: 63, Issue: 1, page 41-79
  • ISSN: 0246-0211

How to cite

top

Buffenoir, E., et al. "Precise study of some number fields and Galois actions occurring in conformal field theory." Annales de l'I.H.P. Physique théorique 63.1 (1995): 41-79. <http://eudml.org/doc/76688>.

@article{Buffenoir1995,
author = {Buffenoir, E., Coste, A., Lascoux, J., Degiovanni, P., Buhot, A.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Verlinde formula; Wess-Zumino-Novikov-Witten model; rational conformal field theory; characteristic polynomials; fusion algebras; Galois action},
language = {eng},
number = {1},
pages = {41-79},
publisher = {Gauthier-Villars},
title = {Precise study of some number fields and Galois actions occurring in conformal field theory},
url = {http://eudml.org/doc/76688},
volume = {63},
year = {1995},
}

TY - JOUR
AU - Buffenoir, E.
AU - Coste, A.
AU - Lascoux, J.
AU - Degiovanni, P.
AU - Buhot, A.
TI - Precise study of some number fields and Galois actions occurring in conformal field theory
JO - Annales de l'I.H.P. Physique théorique
PY - 1995
PB - Gauthier-Villars
VL - 63
IS - 1
SP - 41
EP - 79
LA - eng
KW - Verlinde formula; Wess-Zumino-Novikov-Witten model; rational conformal field theory; characteristic polynomials; fusion algebras; Galois action
UR - http://eudml.org/doc/76688
ER -

References

top
  1. [1] J. Cardy, Operator content of 2d conformal field theories, Nucl. Phys., Vol. B. 270, 1986, pp. 186-204. Zbl0689.17016MR845940
  2. [2] A. Cappelli, C. Itzykson and J.B. Zuber, The ADE classification of A(1)1 and minimal conformal field theories, Comm. Math. Phys., Vol. 113, 1987, pp. 1-26. Zbl0639.17008MR918402
  3. J.M. Drouffe and C. Itzykson, Théorie Statistique des Champs, CNRS, Paris, 1989. 
  4. M. Bauer, Thèse, unpublished. 
  5. [3] A. Coste and T. Gannon, Remarks on Galois symmetry in RCFT, Phys. Lett., Vol. B 323, 1994, pp. 316-321. MR1266785
  6. [4] J. De Boer and J. Goeree, Markov traces and type II1 factors in conformal field theory, Comm. Math. Phys., Vol. 139, 1991, p. 267. Zbl0760.57002MR1120140
  7. [5] P. Degiovanni, Moore and Seiberg equations, topological field theories and Galois theory, in The Grothendieck theory of dessins d'enfants, L. SCHNEPS Ed., London Mathematical Society, Lecture Note Series, Vol. 200, 1993, pp. 359-368. Zbl0822.57024MR1305404
  8. [6] G. Moore and N. Seiberg, Polynomial equations for rational conformal field theories, Phys. Lett. B., Vol. 212, 1988, pp. 451-460. MR962600
  9. [7] G. Moore and N. Seiberg, Classical and quantum conformal field theory, Comm. Math. Phys., Vol. 123, 1989, pp. 177-255. Zbl0694.53074MR1002038
  10. [8] R. Dijkgraaf, E. Verlinde and H. Verlinde, Modular invariance and the fusion algebra, Conformal Field Theories and Related Topics, P. BINÉTRUY, P. SORBA and R. STORA Eds., Nucl. Phys. B. (Proc. Suppl.), Vol. 5, North Holland, 1988, pp. 87-97. Zbl0958.81510MR1002959
  11. [9] A. Kato, Classification of modular invariant partition functions in two dimensions, Mod. Phys. Lett., Vol. A2, 1987, pp. 585-600. MR906000
  12. [10] T. Gannon, Nucl. Phys. Vol. B 396, 1993, pp. 708; and The classification of affine su(3) modular invariant partition functions, Comm. Math. Phys. Vol. 161, 1994, pp. 233-264. Zbl0806.17031MR1218796
  13. T. Gannon, The classification of Affine SU(3) Modular Invariant Partition Functions Revisited, texfile hep-th-9404185. T. GANNON and Q. HO-KIM, The low level modular invariant partition functions of rank two algebras, Int. J. Mod. Phys., Vol. A 9, 1994, pp. 2667-2686. Zbl0985.81532MR1277039
  14. T. Gannon and Q. Ho-Kim, The rank four heterotic modular invariant partition functions, Nucl. Phys., Vol. B 425, 1994, pp. 319-342 Zbl1049.81625MR1292630
  15. [11] Ph. Ruelle, E. Thiran and J. Weyers, Implications of an arithmetical symmetry of the commutant for modular invariants, Nucl. Phys., Vol. B 402, 1993, pp. 693-708. Zbl1043.81698MR1236194
  16. Ph. Ruelle, Thesis, unpublished. 
  17. [12] E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys., Vol. 121, 1989, pp. 351-399. Zbl0667.57005
  18. [13] N.Y. Reshetikhin and V.G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math., Vol. 103, 1991, pp. 547-597. Zbl0725.57007MR1091619
  19. [14] D. Altschuler and A. Coste, Quasi-quantum groups, three manifolds and topological field theory, Comm. Math. Phys. Vol. 150, 1992, pp. 83-107. Zbl0773.57004MR1188498
  20. [15] P. Degiovanni, Moore and Seiberg's equations and 3D topological field theories, Comm. Math. Phys., Vol. 145, 1992, pp. 459-505. Zbl0753.57010MR1162357
  21. [16] T. Kohno, Topological invariants for 3-manifolds using representations of mapping class groups (1), Topology, Vol. 31, 1992, pp. 203-230. Zbl0762.57011MR1167165
  22. [17] P. Degiovanni, Equations de Moore et Seiberg, théories topologiques et théorie de Galois, Preprint ENSLAPP-L-458-94, March 1994. MR1325107
  23. [18] A. Grothendieck, Esquisse d'un programme, Rapport Scientifique, 1984, unpublished, 
  24. [19] P. Degiovanni, Z/NZ Conformal Field Theories, Comm. Math. Phys., Vol. 127, 1990, pp. 71-99. Zbl0696.17012MR1036115
  25. [20] Abrégé d' histoire des mathématiques, sous la direction de J. Dieudonné, Hermann, Paris, 1986. MR864980
  26. M. Malliavin, Algèbre commutative, Masson, 1985. Zbl0584.13001MR790684
  27. [21] Ph. Di Francesco and J.-B. Zuber, Fusion potentials (1), J. Phys., Vol. A 26, 1993, pp. 1441-1454. Zbl0778.17021MR1212013
  28. [22] T. Kawai, On the structure of fusion algebras, Phys. Lett., Vol. B 217, 1989, pp. 247-251. MR980656
  29. [23] D. Gepner and E. Witten, String theory on group manifolds, Nucl. Phys., Vol. B 278, 1986, pp. 493-549. MR862896
  30. [24] J. Fuchs, B. Gato-Rivera, B. Schellekens, and C. Schweigert, Modular invariants and fusion rule automorphisms from Galois theory, Phys. Lett., Vol. B 334, 1994, pp. 113-120. MR1290075
  31. [25] D. Gepner, Fusion rings and geometry, Comm. Math. Phys., Vol. 141, 1991, pp. 381-411. Zbl0752.17033MR1133272
  32. M. Crescimano, Fusion Potentials for Gk and handle squashing, Nucl. Phys., Vol. B 393, 1993, p. 361. MR1214324
  33. [26] J. Humphreys, Introduction to Lie algebras and their representations, Springer GTM. Zbl0254.17004
  34. [27] D. Cox, J. Little and D. O'Shea, Ideals, Varieties and Algorithms, Springer U.T.M., 1991. 
  35. H. Cohen, A Course in Computational Algebraic Number Theory, Springer G.T.M. 138, 1993. Zbl0786.11071MR1228206
  36. [28] Hua Loo Keng, Introduction to Number Theory, Springer (82). Zbl0483.10001MR665428
  37. E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, Chapter 3, reprinted in german by Chelsea. Zbl0041.01102JFM49.0106.10
  38. [29] M. Bauer and C. Itzykson, Springer proc. in Phys., J. M. LUCK, P. MOUSSA and M. WALDSCHMIDT Eds., Vol. 47, 1990, pp. 20-32, Zbl0716.17030
  39. [30] L. Kauffman, proc. J. Hopkins workshop, Florence, 1989, LUSANNA et al. Eds., World Scientific, On Knots, Princeton Univ. Press. 
  40. [31] R. Kirby, A calculus for framed links in S3, Invent. Math., Vol. 45, 1978, pp. 35-56. Zbl0377.55001MR467753
  41. [32] R. Kirby, The topology of 4-manifolds, Lecture Notes in Mathematics, Vol. 1374, Springer Verlag, 1989. Zbl0668.57001MR1001966
  42. [33] R. Kirby and P. Melvin, On the 3-manifold invariants of Witten and Reshetikhin-Turaev for sl(2, C), 1991, Zbl0745.57006MR1117149
  43. [34] T. Kohno, Invariants of 3-manifolds based on Conformal Field Theory and Heegard splittings, Quantum groups, (P. P. KULISH ed., Lecture notes in Mathematics, Vol. 1510, Springer-Verlag, 1990, pp. 341-349. Zbl0752.57008MR1183499
  44. [35] S. Lang, Algebraic number theory, Addison-Wesley (Reading), 1970. Zbl0211.38404MR282947
  45. [36] W.B.R. Lickorish, Invariants of three-manifolds from the combinatorics of the Jones polynomial, Carribridge University, Preprint, 1991. Zbl0728.57011MR1105702
  46. [37] J.P. Serre, Cours d'arithméthique, P.U.F., 1970. Zbl0225.12002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.