Precise study of some number fields and Galois actions occurring in conformal field theory
E. Buffenoir; A. Coste; J. Lascoux; P. Degiovanni; A. Buhot
Annales de l'I.H.P. Physique théorique (1995)
- Volume: 63, Issue: 1, page 41-79
- ISSN: 0246-0211
Access Full Article
topHow to cite
topBuffenoir, E., et al. "Precise study of some number fields and Galois actions occurring in conformal field theory." Annales de l'I.H.P. Physique théorique 63.1 (1995): 41-79. <http://eudml.org/doc/76688>.
@article{Buffenoir1995,
author = {Buffenoir, E., Coste, A., Lascoux, J., Degiovanni, P., Buhot, A.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Verlinde formula; Wess-Zumino-Novikov-Witten model; rational conformal field theory; characteristic polynomials; fusion algebras; Galois action},
language = {eng},
number = {1},
pages = {41-79},
publisher = {Gauthier-Villars},
title = {Precise study of some number fields and Galois actions occurring in conformal field theory},
url = {http://eudml.org/doc/76688},
volume = {63},
year = {1995},
}
TY - JOUR
AU - Buffenoir, E.
AU - Coste, A.
AU - Lascoux, J.
AU - Degiovanni, P.
AU - Buhot, A.
TI - Precise study of some number fields and Galois actions occurring in conformal field theory
JO - Annales de l'I.H.P. Physique théorique
PY - 1995
PB - Gauthier-Villars
VL - 63
IS - 1
SP - 41
EP - 79
LA - eng
KW - Verlinde formula; Wess-Zumino-Novikov-Witten model; rational conformal field theory; characteristic polynomials; fusion algebras; Galois action
UR - http://eudml.org/doc/76688
ER -
References
top- [1] J. Cardy, Operator content of 2d conformal field theories, Nucl. Phys., Vol. B. 270, 1986, pp. 186-204. Zbl0689.17016MR845940
- [2] A. Cappelli, C. Itzykson and J.B. Zuber, The ADE classification of A(1)1 and minimal conformal field theories, Comm. Math. Phys., Vol. 113, 1987, pp. 1-26. Zbl0639.17008MR918402
- J.M. Drouffe and C. Itzykson, Théorie Statistique des Champs, CNRS, Paris, 1989.
- M. Bauer, Thèse, unpublished.
- [3] A. Coste and T. Gannon, Remarks on Galois symmetry in RCFT, Phys. Lett., Vol. B 323, 1994, pp. 316-321. MR1266785
- [4] J. De Boer and J. Goeree, Markov traces and type II1 factors in conformal field theory, Comm. Math. Phys., Vol. 139, 1991, p. 267. Zbl0760.57002MR1120140
- [5] P. Degiovanni, Moore and Seiberg equations, topological field theories and Galois theory, in The Grothendieck theory of dessins d'enfants, L. SCHNEPS Ed., London Mathematical Society, Lecture Note Series, Vol. 200, 1993, pp. 359-368. Zbl0822.57024MR1305404
- [6] G. Moore and N. Seiberg, Polynomial equations for rational conformal field theories, Phys. Lett. B., Vol. 212, 1988, pp. 451-460. MR962600
- [7] G. Moore and N. Seiberg, Classical and quantum conformal field theory, Comm. Math. Phys., Vol. 123, 1989, pp. 177-255. Zbl0694.53074MR1002038
- [8] R. Dijkgraaf, E. Verlinde and H. Verlinde, Modular invariance and the fusion algebra, Conformal Field Theories and Related Topics, P. BINÉTRUY, P. SORBA and R. STORA Eds., Nucl. Phys. B. (Proc. Suppl.), Vol. 5, North Holland, 1988, pp. 87-97. Zbl0958.81510MR1002959
- [9] A. Kato, Classification of modular invariant partition functions in two dimensions, Mod. Phys. Lett., Vol. A2, 1987, pp. 585-600. MR906000
- [10] T. Gannon, Nucl. Phys. Vol. B 396, 1993, pp. 708; and The classification of affine su(3) modular invariant partition functions, Comm. Math. Phys. Vol. 161, 1994, pp. 233-264. Zbl0806.17031MR1218796
- T. Gannon, The classification of Affine SU(3) Modular Invariant Partition Functions Revisited, texfile hep-th-9404185. T. GANNON and Q. HO-KIM, The low level modular invariant partition functions of rank two algebras, Int. J. Mod. Phys., Vol. A 9, 1994, pp. 2667-2686. Zbl0985.81532MR1277039
- T. Gannon and Q. Ho-Kim, The rank four heterotic modular invariant partition functions, Nucl. Phys., Vol. B 425, 1994, pp. 319-342 Zbl1049.81625MR1292630
- [11] Ph. Ruelle, E. Thiran and J. Weyers, Implications of an arithmetical symmetry of the commutant for modular invariants, Nucl. Phys., Vol. B 402, 1993, pp. 693-708. Zbl1043.81698MR1236194
- Ph. Ruelle, Thesis, unpublished.
- [12] E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys., Vol. 121, 1989, pp. 351-399. Zbl0667.57005
- [13] N.Y. Reshetikhin and V.G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math., Vol. 103, 1991, pp. 547-597. Zbl0725.57007MR1091619
- [14] D. Altschuler and A. Coste, Quasi-quantum groups, three manifolds and topological field theory, Comm. Math. Phys. Vol. 150, 1992, pp. 83-107. Zbl0773.57004MR1188498
- [15] P. Degiovanni, Moore and Seiberg's equations and 3D topological field theories, Comm. Math. Phys., Vol. 145, 1992, pp. 459-505. Zbl0753.57010MR1162357
- [16] T. Kohno, Topological invariants for 3-manifolds using representations of mapping class groups (1), Topology, Vol. 31, 1992, pp. 203-230. Zbl0762.57011MR1167165
- [17] P. Degiovanni, Equations de Moore et Seiberg, théories topologiques et théorie de Galois, Preprint ENSLAPP-L-458-94, March 1994. MR1325107
- [18] A. Grothendieck, Esquisse d'un programme, Rapport Scientifique, 1984, unpublished,
- [19] P. Degiovanni, Z/NZ Conformal Field Theories, Comm. Math. Phys., Vol. 127, 1990, pp. 71-99. Zbl0696.17012MR1036115
- [20] Abrégé d' histoire des mathématiques, sous la direction de J. Dieudonné, Hermann, Paris, 1986. MR864980
- M. Malliavin, Algèbre commutative, Masson, 1985. Zbl0584.13001MR790684
- [21] Ph. Di Francesco and J.-B. Zuber, Fusion potentials (1), J. Phys., Vol. A 26, 1993, pp. 1441-1454. Zbl0778.17021MR1212013
- [22] T. Kawai, On the structure of fusion algebras, Phys. Lett., Vol. B 217, 1989, pp. 247-251. MR980656
- [23] D. Gepner and E. Witten, String theory on group manifolds, Nucl. Phys., Vol. B 278, 1986, pp. 493-549. MR862896
- [24] J. Fuchs, B. Gato-Rivera, B. Schellekens, and C. Schweigert, Modular invariants and fusion rule automorphisms from Galois theory, Phys. Lett., Vol. B 334, 1994, pp. 113-120. MR1290075
- [25] D. Gepner, Fusion rings and geometry, Comm. Math. Phys., Vol. 141, 1991, pp. 381-411. Zbl0752.17033MR1133272
- M. Crescimano, Fusion Potentials for Gk and handle squashing, Nucl. Phys., Vol. B 393, 1993, p. 361. MR1214324
- [26] J. Humphreys, Introduction to Lie algebras and their representations, Springer GTM. Zbl0254.17004
- [27] D. Cox, J. Little and D. O'Shea, Ideals, Varieties and Algorithms, Springer U.T.M., 1991.
- H. Cohen, A Course in Computational Algebraic Number Theory, Springer G.T.M. 138, 1993. Zbl0786.11071MR1228206
- [28] Hua Loo Keng, Introduction to Number Theory, Springer (82). Zbl0483.10001MR665428
- E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, Chapter 3, reprinted in german by Chelsea. Zbl0041.01102JFM49.0106.10
- [29] M. Bauer and C. Itzykson, Springer proc. in Phys., J. M. LUCK, P. MOUSSA and M. WALDSCHMIDT Eds., Vol. 47, 1990, pp. 20-32, Zbl0716.17030
- [30] L. Kauffman, proc. J. Hopkins workshop, Florence, 1989, LUSANNA et al. Eds., World Scientific, On Knots, Princeton Univ. Press.
- [31] R. Kirby, A calculus for framed links in S3, Invent. Math., Vol. 45, 1978, pp. 35-56. Zbl0377.55001MR467753
- [32] R. Kirby, The topology of 4-manifolds, Lecture Notes in Mathematics, Vol. 1374, Springer Verlag, 1989. Zbl0668.57001MR1001966
- [33] R. Kirby and P. Melvin, On the 3-manifold invariants of Witten and Reshetikhin-Turaev for sl(2, C), 1991, Zbl0745.57006MR1117149
- [34] T. Kohno, Invariants of 3-manifolds based on Conformal Field Theory and Heegard splittings, Quantum groups, (P. P. KULISH ed., Lecture notes in Mathematics, Vol. 1510, Springer-Verlag, 1990, pp. 341-349. Zbl0752.57008MR1183499
- [35] S. Lang, Algebraic number theory, Addison-Wesley (Reading), 1970. Zbl0211.38404MR282947
- [36] W.B.R. Lickorish, Invariants of three-manifolds from the combinatorics of the Jones polynomial, Carribridge University, Preprint, 1991. Zbl0728.57011MR1105702
- [37] J.P. Serre, Cours d'arithméthique, P.U.F., 1970. Zbl0225.12002
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.