Construction combinatoire des invariants de Vassiliev-Kontsevich des nœuds

Pierre Cartier

Recherche Coopérative sur Programme n°25 (1993)

  • Volume: 45, page 1-10

How to cite

top

Cartier, Pierre. "Construction combinatoire des invariants de Vassiliev-Kontsevich des nœuds." Recherche Coopérative sur Programme n°25 45 (1993): 1-10. <http://eudml.org/doc/274938>.

@article{Cartier1993,
author = {Cartier, Pierre},
journal = {Recherche Coopérative sur Programme n°25},
language = {fre},
pages = {1-10},
publisher = {Institut de Recherche Mathématique Avancée - Université Louis Pasteur},
title = {Construction combinatoire des invariants de Vassiliev-Kontsevich des nœuds},
url = {http://eudml.org/doc/274938},
volume = {45},
year = {1993},
}

TY - JOUR
AU - Cartier, Pierre
TI - Construction combinatoire des invariants de Vassiliev-Kontsevich des nœuds
JO - Recherche Coopérative sur Programme n°25
PY - 1993
PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
VL - 45
SP - 1
EP - 10
LA - fre
UR - http://eudml.org/doc/274938
ER -

References

top
  1. [1] V. G. Drinfeld, On quasi triangular quasi-Hopf algebras and a group closely connected with Gal ( ¯ / ) , Leningrad Math. J.2 (1991), p. 829-860. Zbl0728.16021MR1080203
  2. [2] P. J. Freyd et D. N. Yetter, Braided compact closed categories with applications to low dimensional topology. Adv. Math.77 (1989), p. 156-182. Zbl0679.57003MR1020583
  3. [3] V. Jones, A polynomial invariant of knots via von Neumann algebras, Bull. Amer. Math. Soc.12 (1985), p. 103-111. Zbl0564.57006MR766964
  4. [4] A. Joyal et R. Street, Tortile Yang-Baxter operators in tensor categories, Journ. Pure Appl. Alg.71 (1991), p. 43-51. Zbl0726.18004MR1107651
  5. [5] M. Kontsevtch, Graphs, homotopical algebra and low-dimensional topology, prépublication, 1992. 
  6. [6] S. Maclane, Natural associativity and commutativity, Rice Univ. Stud.49 (1963), p. 28-46. Zbl0244.18008MR170925
  7. [7] S. Piunikhin, Combinatorial expression for universal Vassiliev link invariant, prépublication, Harvard, mars 1993. Zbl0996.57501MR1338871
  8. [8] D. Quillen, Rational homotopy theory, Ann. of Maths90 (1969), p. 205-295. Zbl0191.53702MR258031
  9. [9] N. Y. Reshetikhin et V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys.127 (1990), p. 1-26. Zbl0768.57003MR1036112
  10. [10] V. A. Vassiliev, Cohomology of knot spaces, in Theory of singularities and its applications, Advances in Soviet Math., A.M.S. (1990), p. 23-69. Zbl0727.57008MR1089670

NotesEmbed ?

top

You must be logged in to post comments.