Construction combinatoire des invariants de Vassiliev-Kontsevich des nœuds

Pierre Cartier

Recherche Coopérative sur Programme n°25 (1993)

  • Volume: 45, page 1-10

How to cite

top

Cartier, Pierre. "Construction combinatoire des invariants de Vassiliev-Kontsevich des nœuds." Recherche Coopérative sur Programme n°25 45 (1993): 1-10. <http://eudml.org/doc/274938>.

@article{Cartier1993,
author = {Cartier, Pierre},
journal = {Recherche Coopérative sur Programme n°25},
language = {fre},
pages = {1-10},
publisher = {Institut de Recherche Mathématique Avancée - Université Louis Pasteur},
title = {Construction combinatoire des invariants de Vassiliev-Kontsevich des nœuds},
url = {http://eudml.org/doc/274938},
volume = {45},
year = {1993},
}

TY - JOUR
AU - Cartier, Pierre
TI - Construction combinatoire des invariants de Vassiliev-Kontsevich des nœuds
JO - Recherche Coopérative sur Programme n°25
PY - 1993
PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
VL - 45
SP - 1
EP - 10
LA - fre
UR - http://eudml.org/doc/274938
ER -

References

top
  1. [1] V. G. Drinfeld, On quasi triangular quasi-Hopf algebras and a group closely connected with Gal ( ¯ / ) , Leningrad Math. J.2 (1991), p. 829-860. Zbl0728.16021MR1080203
  2. [2] P. J. Freyd et D. N. Yetter, Braided compact closed categories with applications to low dimensional topology. Adv. Math.77 (1989), p. 156-182. Zbl0679.57003MR1020583
  3. [3] V. Jones, A polynomial invariant of knots via von Neumann algebras, Bull. Amer. Math. Soc.12 (1985), p. 103-111. Zbl0564.57006MR766964
  4. [4] A. Joyal et R. Street, Tortile Yang-Baxter operators in tensor categories, Journ. Pure Appl. Alg.71 (1991), p. 43-51. Zbl0726.18004MR1107651
  5. [5] M. Kontsevtch, Graphs, homotopical algebra and low-dimensional topology, prépublication, 1992. 
  6. [6] S. Maclane, Natural associativity and commutativity, Rice Univ. Stud.49 (1963), p. 28-46. Zbl0244.18008MR170925
  7. [7] S. Piunikhin, Combinatorial expression for universal Vassiliev link invariant, prépublication, Harvard, mars 1993. Zbl0996.57501MR1338871
  8. [8] D. Quillen, Rational homotopy theory, Ann. of Maths90 (1969), p. 205-295. Zbl0191.53702MR258031
  9. [9] N. Y. Reshetikhin et V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys.127 (1990), p. 1-26. Zbl0768.57003MR1036112
  10. [10] V. A. Vassiliev, Cohomology of knot spaces, in Theory of singularities and its applications, Advances in Soviet Math., A.M.S. (1990), p. 23-69. Zbl0727.57008MR1089670

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.