Nilpotence, radicaux et structures monoïdales
Yves André; Bruno Kahn; Peter O’Sullivan
Rendiconti del Seminario Matematico della Università di Padova (2002)
- Volume: 108, page 107-291
- ISSN: 0041-8994
Access Full Article
topHow to cite
topAndré, Yves, Kahn, Bruno, and O’Sullivan, Peter. "Nilpotence, radicaux et structures monoïdales." Rendiconti del Seminario Matematico della Università di Padova 108 (2002): 107-291. <http://eudml.org/doc/108589>.
@article{André2002,
author = {André, Yves, Kahn, Bruno, O’Sullivan, Peter},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {fre},
pages = {107-291},
publisher = {Seminario Matematico of the University of Padua},
title = {Nilpotence, radicaux et structures monoïdales},
url = {http://eudml.org/doc/108589},
volume = {108},
year = {2002},
}
TY - JOUR
AU - André, Yves
AU - Kahn, Bruno
AU - O’Sullivan, Peter
TI - Nilpotence, radicaux et structures monoïdales
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2002
PB - Seminario Matematico of the University of Padua
VL - 108
SP - 107
EP - 291
LA - fre
UR - http://eudml.org/doc/108589
ER -
References
top- [1] Y. ANDRÉ - B. KAHN, Construction inconditionnelle de groupes de Galois motiviques, C. R. Acad. Sci. Paris, Sér I., 331 (2002), pp. 989-994. Zbl1052.14021MR1913723
- [2] A. BEILINSON, Height pairing between algebraic cycles, in: K-theory, Arithmetic and Geometry, Lect. notes in Math. 1289, Springer (1987), pp. 27-41. Zbl0652.14008MR923131
- [3] D. BENSON, Representations and cohomology I, Cambridge studies 30, Cambridge Univ. Press, 1995. Zbl0908.20001MR1110581
- [4] F. BEUKERS - D. BROWNAWELL - G. HECKMAN, Siegel normality, Annals of Math., 127 (1988), pp. 279-308. Zbl0652.10027MR932298
- [5] N. BOURBAKI, Algèbre, chapitre VIII, Hermann, 1958.
- [6] N. BOURBAKI, Groupes et algèbres de Lie, chapitre VI, Hermann/CCLS, 1975. MR453824
- [7] N. BOURBAKI, Groupes et algèbres de Lie, chapitre VIII, Hermann/CCLS, 1975. MR453824
- [8] L. BREEN, Tannakian categories, in: Motives, Proc. Symposia pure Math., 55 (I), AMS (1994), pp. 337-376. Zbl0810.18008MR1265536
- [9] A. BRUGUIÈRES, Théorie tannakienne non commutative, Comm. in Algebra, 22 (14) (1994), pp. 5817-5860. Zbl0808.18005MR1298753
- [10] A. BRUGUIÈRES, Tresses et structure entière sur la catégorie des représentations de SLN quantique, Comm. in Algebra, 28 (2000), pp. 1989-2028. Zbl0951.18003MR1747368
- [11] H. CARTAN - S. EILENBERG, Homological algebra, Princeton Univ. Press, 1956. Zbl0075.24305MR77480
- [12] P. CARTIER, Construction combinatoire des invariants de Vassiliev-Kontsevich des noeuds, C. R. Acad. Sci. Paris, 316 (1993), pp. 1205-1210. Zbl0791.57006MR1221650
- [13] J. CUNTZ - D. QUILLEN, Algebra extensions and nonsingularity, Journal A.M.S., 8 2 (1995), pp. 251-289. Zbl0838.19001MR1303029
- [14] P. DELIGNE, Catégories tannakiennes, in: The Grothendieck Festschrift, vol. 2, Birkhäuser P.M., 87 (1990), pp. 111-198. Zbl0727.14010MR1106898
- [15] P. DELIGNE et al., Quantum fields and strings: a Course for Mathematicians, AMS, 1999.
- [16] P. GABRIEL, Des catégories abéliennes, Bull. Soc. Math. France, 90 (1962), pp. 323-448. Zbl0201.35602MR232821
- [17] P. GABRIEL, Problèmes actuels de théorie des représentations, L’Ens. Math., 20 (1974), pp. 323-332. Zbl0302.16028MR366984
- [18] J. GIRAUD, Cohomologie non abélienne, Springer, 1971. Zbl0226.14011MR344253
- [19] A. GROTHENDIECK, Sur quelques points d’algèbre homologique, Tohoku Math. J. (2), 9 (1957), pp. 119-221. Zbl0118.26104MR102537
- [20] V. GINZBURG, Principal nilpotent pairs in a semisimple Lie algebra. I, Invent. Math., 140 (2000), pp. 511-561. Zbl0984.17007MR1760750
- [21] V. GULETSKII - C. PEDRINI, The Chow motive of the Godeaux surface, prépublication (2001). Zbl1054.14009MR1954064
- [22] D. HAPPEL, Triangulated categories in the representation theory of finite dimensional algebras, London Math. Soc. Lect. notes, 119 (1988), Cambridge Univ. Press. Zbl0635.16017MR935124
- [23] G. HIGMAN, On a conjecture of Nagata, Proc. Camb. Philos. Soc., 52 (1956), pp. 1-4. Zbl0072.02502MR73581
- [24] N. JACOBSON, Rational methods in Lie theory, Ann. of Math., 36 (1935), pp. 875-881. Zbl0012.33704MR1503258JFM61.1030.03
- [25] U. JANNSEN, Motives, numerical equivalence and semi-simplicity, Invent. Math., 107 (1992), pp. 447-452. Zbl0762.14003MR1150598
- [26] U. JANNSEN, Equivalence relations on algebraic cycles, in The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), pp. 225-260, NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, 2000. Zbl0988.14003MR1744947
- [27] A. JOYAL - R. STREET, Braided monoidal categories, Adv. in Math., 102 (1993), pp. 20-78. Zbl0817.18007MR1250465
- [28] C. KASSEL - M. ROSSO - V. TURAEV, Quantum groups and knot invariants, S.M.F. Panoramas et synthèses, 5 (1997). Zbl0878.17013MR1470954
- [29] N. KATZ - W. MESSING, Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math., 23 (1974), pp. 73-77. Zbl0275.14011MR332791
- [30] G. M. KELLY, On the radical of a category, J. Australian Math. Soc., 4 (1964), pp. 299-307. Zbl0124.01501MR170922
- [31] O. KERNER - A. SKOWROŃSKI, On module categories with nilpotent infinite radical, Compos. Math., 77 3 (1991), pp. 313-333. Zbl0717.16012MR1092772
- [32] S. I. KIMURA, Chow motives can be finite-dimensional, in some sense, à paraître au J. of Alg. Geom.
- [33] B. KOSTANT, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math., 81 (1959), pp. 973-1032. Zbl0099.25603MR114875
- [34] K. KÜNNEMAN, On the Chow motive of an abelian scheme, in: Motives, Proc. Symposia pure Math., 55 (I), AMS (1994), pp. 189-205. Zbl0823.14032MR1265530
- [35] P. Y. LEDUC, catégories semi-simples et catégories primitives, Canad. J. Math., 20 (1968), pp. 612-628. Zbl0159.02104MR228568
- [36] S. MAC LANE, Categories for the working mathematician, 2ème éd., Springer GTM, 5 (1998). Zbl0906.18001MR1712872
- [37] G. A. MARGULIS, Discrete subgroups of semisimple Lie groups, Springer, Berlin, 1991. Zbl0732.22008MR1090825
- [38] B. MITCHELL, Rings with several objects, Adv. Math., 8 (1972), pp. 1-161. Zbl0232.18009MR294454
- [39] V. V. MOROZOV, Sur un élément nilpotent dans une algèbre de Lie semi-simple (en russe), Dokl. Akad. Nauk SSSR, 36 (1942), pp. 83-86. Zbl0063.04103MR7750
- [40] V. V. MOROZOV, Sur le centralisateur d’une sous-algèbre semi-simple d’une algèbre de Lie semi-simple (en russe), Dokl. Akad. Nauk SSSR, 36 (1942), pp. 259-261. Zbl0063.04104
- [41] J. P. MURRE, On a conjectural filtration on the Chow groups of an algebraic variety, parts I and II, Indag. Math., 4 (1993), pp. 177-201. Zbl0805.14001MR1225267
- [42] M. NAGATA, On the nilpotency of nil-algebras, J. Math. Soc. Japan, 4 (1952), pp. 296-301. Zbl0049.02402MR53088
- [43] M. NATHANSON, Classification problems in K-categories, Fund. Math., 105 3 (1979/80), pp. 187-197. Zbl0457.18007MR580581
- [44] P. O’SULLIVAN, lettres aux auteurs, 29 avril et 12 mai 2002.
- [45] D. I. PANYUSHEV, Nilpotent pairs in semisimple Lie algebras and their characteristics, Internat. Math. Res. Notices, 2000, 1-21. Zbl0954.17007MR1741606
- [46] A. PIARD, Indecomposable representations of a semi-direct product sl(2) l 3A and semi-simple groups containing sl(2) l3A, in: Sympos. Math. XXXI (Roma, 1988), pp. 185-195, Acad. Press, 1990. Zbl0718.22010MR1059502
- [47] PLATON, Phédon, § LIII.
- [48] N. POPESCU, Abelian categories with applications to rings and modules, Acad. Press, 1973. Zbl0271.18006MR340375
- [49] M. PREST, Model theory and modules, L.M.S. Lecture note series 130, Cambridge Univ. Press 1988. Zbl0634.03025MR933092
- [50] C. M. RINGEL, Recent advances in the representation theory of finite dimensional algebras, in: Representation theory of finite groups and finite-dimensional algebras, Birkhäuser Progress in Math., 95 (1991). Zbl0757.16006MR1112160
- [51] L. ROWEN, Ring theory, vol. 1, Acad. Press, 1988. Zbl0651.16002
- [52] W. RUMP, Doubling a path algebra, or: how to extend indecomposable modules to simple modules, in: Representation theory of groups, algebras and orders (Costanţa, 1995), An. Ştiinţ. Univ. Ovidius Constanţa Ser Mat., 4 2 (1996), pp. 174-185. Zbl0876.16006MR1428466
- [53] N. SAAVEDRA RIVANO, Catégories tannakiennes, Lect. Notes in Math. 265, Springer, 1972. Zbl0241.14008MR338002
- [54] J.-P. SERRE, Gèbres, L’Ens. Math., 39 (1993), pp. 33-85. Zbl0810.16039
- [55] J.-P. SERRE, Propriétés conjecturales des groupes de Galois motiviques et des représentations l-adiques, in: Motives, Proc. Symposia pure Math., 55 (I), AMS (1994), pp. 377-400. Zbl0812.14002MR1265537
- [56] D. SIMSON - A. SKOWROŃSKI, The Jacobson radical power series of module categories and the representation type, Bol. Soc. Mat. Mexicana, 5 2 (1999), pp. 223-236. Zbl0960.16012MR1738424
- [57] R. STREET, Ideals, radicals and structure of additive categories, Appl. Cat. Structures, 3 (1995), pp. 139-149. Zbl0826.18003MR1329188
- [58] R. THOMASON, The classification of triangulated categories, Compos. Math., 105 (1997), pp. 1-27. Zbl0873.18003MR1436741
- [59] V. VOEVODSKY, A nilpotence theorem for cycles algebraically equivalent to zero, International Mathematics Research Notices, 4 (1995), pp. 1-12. Zbl0861.14006MR1326064
- [60] P. VOGEL, Invariants de Witten-Reshetikin-Turaev et théories quantiques des champs, in: Panoramas et synthèses, 7 (1999), pp. 117-143. MR1691795
Citations in EuDML Documents
top- Alessio Del Padrone, Carlo Mazza, Schur-Finite Motives and Trace Identities
- Yves André, Bruno Kahn, Erratum : Nilpotence, radicaux et structures monoïdales
- Joël Riou, Catégorie homotopique stable d’un site suspendu avec intervalle
- Yves André, Motifs de dimension finie
- Bruno Kahn, Équivalences rationnelle et numérique sur certaines variétés de type abélien sur un corps fini
- Bruno Kahn, Formes quadratiques et cycles algébriques
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.