Nilpotence, radicaux et structures monoïdales

Yves André; Bruno Kahn; Peter O’Sullivan

Rendiconti del Seminario Matematico della Università di Padova (2002)

  • Volume: 108, page 107-291
  • ISSN: 0041-8994

How to cite

top

André, Yves, Kahn, Bruno, and O’Sullivan, Peter. "Nilpotence, radicaux et structures monoïdales." Rendiconti del Seminario Matematico della Università di Padova 108 (2002): 107-291. <http://eudml.org/doc/108589>.

@article{André2002,
author = {André, Yves, Kahn, Bruno, O’Sullivan, Peter},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {fre},
pages = {107-291},
publisher = {Seminario Matematico of the University of Padua},
title = {Nilpotence, radicaux et structures monoïdales},
url = {http://eudml.org/doc/108589},
volume = {108},
year = {2002},
}

TY - JOUR
AU - André, Yves
AU - Kahn, Bruno
AU - O’Sullivan, Peter
TI - Nilpotence, radicaux et structures monoïdales
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2002
PB - Seminario Matematico of the University of Padua
VL - 108
SP - 107
EP - 291
LA - fre
UR - http://eudml.org/doc/108589
ER -

References

top
  1. [1] Y. ANDRÉ - B. KAHN, Construction inconditionnelle de groupes de Galois motiviques, C. R. Acad. Sci. Paris, Sér I., 331 (2002), pp. 989-994. Zbl1052.14021MR1913723
  2. [2] A. BEILINSON, Height pairing between algebraic cycles, in: K-theory, Arithmetic and Geometry, Lect. notes in Math. 1289, Springer (1987), pp. 27-41. Zbl0652.14008MR923131
  3. [3] D. BENSON, Representations and cohomology I, Cambridge studies 30, Cambridge Univ. Press, 1995. Zbl0908.20001MR1110581
  4. [4] F. BEUKERS - D. BROWNAWELL - G. HECKMAN, Siegel normality, Annals of Math., 127 (1988), pp. 279-308. Zbl0652.10027MR932298
  5. [5] N. BOURBAKI, Algèbre, chapitre VIII, Hermann, 1958. 
  6. [6] N. BOURBAKI, Groupes et algèbres de Lie, chapitre VI, Hermann/CCLS, 1975. MR453824
  7. [7] N. BOURBAKI, Groupes et algèbres de Lie, chapitre VIII, Hermann/CCLS, 1975. MR453824
  8. [8] L. BREEN, Tannakian categories, in: Motives, Proc. Symposia pure Math., 55 (I), AMS (1994), pp. 337-376. Zbl0810.18008MR1265536
  9. [9] A. BRUGUIÈRES, Théorie tannakienne non commutative, Comm. in Algebra, 22 (14) (1994), pp. 5817-5860. Zbl0808.18005MR1298753
  10. [10] A. BRUGUIÈRES, Tresses et structure entière sur la catégorie des représentations de SLN quantique, Comm. in Algebra, 28 (2000), pp. 1989-2028. Zbl0951.18003MR1747368
  11. [11] H. CARTAN - S. EILENBERG, Homological algebra, Princeton Univ. Press, 1956. Zbl0075.24305MR77480
  12. [12] P. CARTIER, Construction combinatoire des invariants de Vassiliev-Kontsevich des noeuds, C. R. Acad. Sci. Paris, 316 (1993), pp. 1205-1210. Zbl0791.57006MR1221650
  13. [13] J. CUNTZ - D. QUILLEN, Algebra extensions and nonsingularity, Journal A.M.S., 8 2 (1995), pp. 251-289. Zbl0838.19001MR1303029
  14. [14] P. DELIGNE, Catégories tannakiennes, in: The Grothendieck Festschrift, vol. 2, Birkhäuser P.M., 87 (1990), pp. 111-198. Zbl0727.14010MR1106898
  15. [15] P. DELIGNE et al., Quantum fields and strings: a Course for Mathematicians, AMS, 1999. 
  16. [16] P. GABRIEL, Des catégories abéliennes, Bull. Soc. Math. France, 90 (1962), pp. 323-448. Zbl0201.35602MR232821
  17. [17] P. GABRIEL, Problèmes actuels de théorie des représentations, L’Ens. Math., 20 (1974), pp. 323-332. Zbl0302.16028MR366984
  18. [18] J. GIRAUD, Cohomologie non abélienne, Springer, 1971. Zbl0226.14011MR344253
  19. [19] A. GROTHENDIECK, Sur quelques points d’algèbre homologique, Tohoku Math. J. (2), 9 (1957), pp. 119-221. Zbl0118.26104MR102537
  20. [20] V. GINZBURG, Principal nilpotent pairs in a semisimple Lie algebra. I, Invent. Math., 140 (2000), pp. 511-561. Zbl0984.17007MR1760750
  21. [21] V. GULETSKII - C. PEDRINI, The Chow motive of the Godeaux surface, prépublication (2001). Zbl1054.14009MR1954064
  22. [22] D. HAPPEL, Triangulated categories in the representation theory of finite dimensional algebras, London Math. Soc. Lect. notes, 119 (1988), Cambridge Univ. Press. Zbl0635.16017MR935124
  23. [23] G. HIGMAN, On a conjecture of Nagata, Proc. Camb. Philos. Soc., 52 (1956), pp. 1-4. Zbl0072.02502MR73581
  24. [24] N. JACOBSON, Rational methods in Lie theory, Ann. of Math., 36 (1935), pp. 875-881. Zbl0012.33704MR1503258JFM61.1030.03
  25. [25] U. JANNSEN, Motives, numerical equivalence and semi-simplicity, Invent. Math., 107 (1992), pp. 447-452. Zbl0762.14003MR1150598
  26. [26] U. JANNSEN, Equivalence relations on algebraic cycles, in The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), pp. 225-260, NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, 2000. Zbl0988.14003MR1744947
  27. [27] A. JOYAL - R. STREET, Braided monoidal categories, Adv. in Math., 102 (1993), pp. 20-78. Zbl0817.18007MR1250465
  28. [28] C. KASSEL - M. ROSSO - V. TURAEV, Quantum groups and knot invariants, S.M.F. Panoramas et synthèses, 5 (1997). Zbl0878.17013MR1470954
  29. [29] N. KATZ - W. MESSING, Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math., 23 (1974), pp. 73-77. Zbl0275.14011MR332791
  30. [30] G. M. KELLY, On the radical of a category, J. Australian Math. Soc., 4 (1964), pp. 299-307. Zbl0124.01501MR170922
  31. [31] O. KERNER - A. SKOWROŃSKI, On module categories with nilpotent infinite radical, Compos. Math., 77 3 (1991), pp. 313-333. Zbl0717.16012MR1092772
  32. [32] S. I. KIMURA, Chow motives can be finite-dimensional, in some sense, à paraître au J. of Alg. Geom. 
  33. [33] B. KOSTANT, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math., 81 (1959), pp. 973-1032. Zbl0099.25603MR114875
  34. [34] K. KÜNNEMAN, On the Chow motive of an abelian scheme, in: Motives, Proc. Symposia pure Math., 55 (I), AMS (1994), pp. 189-205. Zbl0823.14032MR1265530
  35. [35] P. Y. LEDUC, catégories semi-simples et catégories primitives, Canad. J. Math., 20 (1968), pp. 612-628. Zbl0159.02104MR228568
  36. [36] S. MAC LANE, Categories for the working mathematician, 2ème éd., Springer GTM, 5 (1998). Zbl0906.18001MR1712872
  37. [37] G. A. MARGULIS, Discrete subgroups of semisimple Lie groups, Springer, Berlin, 1991. Zbl0732.22008MR1090825
  38. [38] B. MITCHELL, Rings with several objects, Adv. Math., 8 (1972), pp. 1-161. Zbl0232.18009MR294454
  39. [39] V. V. MOROZOV, Sur un élément nilpotent dans une algèbre de Lie semi-simple (en russe), Dokl. Akad. Nauk SSSR, 36 (1942), pp. 83-86. Zbl0063.04103MR7750
  40. [40] V. V. MOROZOV, Sur le centralisateur d’une sous-algèbre semi-simple d’une algèbre de Lie semi-simple (en russe), Dokl. Akad. Nauk SSSR, 36 (1942), pp. 259-261. Zbl0063.04104
  41. [41] J. P. MURRE, On a conjectural filtration on the Chow groups of an algebraic variety, parts I and II, Indag. Math., 4 (1993), pp. 177-201. Zbl0805.14001MR1225267
  42. [42] M. NAGATA, On the nilpotency of nil-algebras, J. Math. Soc. Japan, 4 (1952), pp. 296-301. Zbl0049.02402MR53088
  43. [43] M. NATHANSON, Classification problems in K-categories, Fund. Math., 105 3 (1979/80), pp. 187-197. Zbl0457.18007MR580581
  44. [44] P. O’SULLIVAN, lettres aux auteurs, 29 avril et 12 mai 2002. 
  45. [45] D. I. PANYUSHEV, Nilpotent pairs in semisimple Lie algebras and their characteristics, Internat. Math. Res. Notices, 2000, 1-21. Zbl0954.17007MR1741606
  46. [46] A. PIARD, Indecomposable representations of a semi-direct product sl(2) l 3A and semi-simple groups containing sl(2) l3A, in: Sympos. Math. XXXI (Roma, 1988), pp. 185-195, Acad. Press, 1990. Zbl0718.22010MR1059502
  47. [47] PLATON, Phédon, § LIII. 
  48. [48] N. POPESCU, Abelian categories with applications to rings and modules, Acad. Press, 1973. Zbl0271.18006MR340375
  49. [49] M. PREST, Model theory and modules, L.M.S. Lecture note series 130, Cambridge Univ. Press 1988. Zbl0634.03025MR933092
  50. [50] C. M. RINGEL, Recent advances in the representation theory of finite dimensional algebras, in: Representation theory of finite groups and finite-dimensional algebras, Birkhäuser Progress in Math., 95 (1991). Zbl0757.16006MR1112160
  51. [51] L. ROWEN, Ring theory, vol. 1, Acad. Press, 1988. Zbl0651.16002
  52. [52] W. RUMP, Doubling a path algebra, or: how to extend indecomposable modules to simple modules, in: Representation theory of groups, algebras and orders (Costanţa, 1995), An. Ştiinţ. Univ. Ovidius Constanţa Ser Mat., 4 2 (1996), pp. 174-185. Zbl0876.16006MR1428466
  53. [53] N. SAAVEDRA RIVANO, Catégories tannakiennes, Lect. Notes in Math. 265, Springer, 1972. Zbl0241.14008MR338002
  54. [54] J.-P. SERRE, Gèbres, L’Ens. Math., 39 (1993), pp. 33-85. Zbl0810.16039
  55. [55] J.-P. SERRE, Propriétés conjecturales des groupes de Galois motiviques et des représentations l-adiques, in: Motives, Proc. Symposia pure Math., 55 (I), AMS (1994), pp. 377-400. Zbl0812.14002MR1265537
  56. [56] D. SIMSON - A. SKOWROŃSKI, The Jacobson radical power series of module categories and the representation type, Bol. Soc. Mat. Mexicana, 5 2 (1999), pp. 223-236. Zbl0960.16012MR1738424
  57. [57] R. STREET, Ideals, radicals and structure of additive categories, Appl. Cat. Structures, 3 (1995), pp. 139-149. Zbl0826.18003MR1329188
  58. [58] R. THOMASON, The classification of triangulated categories, Compos. Math., 105 (1997), pp. 1-27. Zbl0873.18003MR1436741
  59. [59] V. VOEVODSKY, A nilpotence theorem for cycles algebraically equivalent to zero, International Mathematics Research Notices, 4 (1995), pp. 1-12. Zbl0861.14006MR1326064
  60. [60] P. VOGEL, Invariants de Witten-Reshetikin-Turaev et théories quantiques des champs, in: Panoramas et synthèses, 7 (1999), pp. 117-143. MR1691795

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.