On a divisibility problem

Horst Alzer; József Sándor

Rendiconti del Seminario Matematico della Università di Padova (2013)

  • Volume: 130, page 215-220
  • ISSN: 0041-8994

How to cite

top

Alzer, Horst, and Sándor, József. "On a divisibility problem." Rendiconti del Seminario Matematico della Università di Padova 130 (2013): 215-220. <http://eudml.org/doc/275144>.

@article{Alzer2013,
author = {Alzer, Horst, Sándor, József},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {divisibility; Euler totient; sum of divisors; Weierstrass product; inequalities},
language = {eng},
pages = {215-220},
publisher = {Seminario Matematico of the University of Padua},
title = {On a divisibility problem},
url = {http://eudml.org/doc/275144},
volume = {130},
year = {2013},
}

TY - JOUR
AU - Alzer, Horst
AU - Sándor, József
TI - On a divisibility problem
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2013
PB - Seminario Matematico of the University of Padua
VL - 130
SP - 215
EP - 220
LA - eng
KW - divisibility; Euler totient; sum of divisors; Weierstrass product; inequalities
UR - http://eudml.org/doc/275144
ER -

References

top
  1. [1] C. Adiga - H. N. Ramaswamy, A note on certain divisibility problem, Int. J. Math. Anal.2 (2008), pp. 1157–1161. Zbl1221.11195MR2514979
  2. [2] T. M. Apostol, Introduction to Analytic Number Theory, Springer, New York, 1976. MR434929
  3. [3] K. Harris, On the classification of integers n that divide ϕ ( n ) + σ ( n ) , J. Number Th.129 (2009), pp. 2093–2110. Zbl1185.11008MR2528055
  4. [4] Q.-X. Jin - M. Tang, The 4 -Nicol numbers having five different prime divisors, J. Integer Seq. 14 (2011), article 11.7.1 (electronic). Zbl1223.11006MR2832170
  5. [5] F. Luca - J. Séndor, On a problem of Nicol and Zhang, J. Number Th.128 (2008), pp. 1044–1059. MR2400056
  6. [6] C. A. Nicol, Some diophantine equations involving arithmetic functions, J. Math. Anal. Appl.15 (1966), pp. 154–161. Zbl0139.27202MR195809
  7. [7] S. Yang, On a divisibility problem of Nicol and Zhang, (Chinese), Adv. Math. (China) 39 (2010), pp. 747–754. MR2780263
  8. [8] M. Zhang, On a divisibility problem. J. Sichuan Univ. Nat. Sci. Ed.32 (1995), pp. 240–242. Zbl0842.11003MR1406785

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.