Tests de primalité d'après Adleman, Rumely, Pomerance et Lenstra

Henri Cohen

Séminaire de théorie des nombres de Grenoble (1980-1981)

  • Volume: 9, page 1-32

How to cite

top

Cohen, Henri. "Tests de primalité d'après Adleman, Rumely, Pomerance et Lenstra." Séminaire de théorie des nombres de Grenoble 9 (1980-1981): 1-32. <http://eudml.org/doc/275165>.

@article{Cohen1980-1981,
author = {Cohen, Henri},
journal = {Séminaire de théorie des nombres de Grenoble},
keywords = {probabilistic criteria; primality testing; power reciprocity; polynomial time algorithm; strong pseudoprime},
language = {fre},
pages = {1-32},
publisher = {Institut des Mathématiques Pures - Université Scientifique et Médicale de Grenoble},
title = {Tests de primalité d'après Adleman, Rumely, Pomerance et Lenstra},
url = {http://eudml.org/doc/275165},
volume = {9},
year = {1980-1981},
}

TY - JOUR
AU - Cohen, Henri
TI - Tests de primalité d'après Adleman, Rumely, Pomerance et Lenstra
JO - Séminaire de théorie des nombres de Grenoble
PY - 1980-1981
PB - Institut des Mathématiques Pures - Université Scientifique et Médicale de Grenoble
VL - 9
SP - 1
EP - 32
LA - fre
KW - probabilistic criteria; primality testing; power reciprocity; polynomial time algorithm; strong pseudoprime
UR - http://eudml.org/doc/275165
ER -

References

top
  1. [1] Adleman, Rumely, Pomerance - On distinguishing prime numbers from composite numbers, à paraître. Zbl0526.10004
  2. [2] Brillhart, Lehmer et Selfridge - New primality criteria and factorizations of 2 m ± 1 , Math. Comp., 29 (1975), pp. 620-647. Zbl0311.10009MR384673
  3. [3] Knuth - The Art of Computer Programming, vol. II, Seminumerical algorithms, Addison-Wesley 1969, 2nd edition 1981. Zbl0477.65002MR633878
  4. [4] Lenstra - Tests de primalité et théorie de Galois, journées de théorie des nombres, mars 1981 
  5. Lenstra - Tests de primalité et théorie de GaloisReims et séminaire Bourbaki, juin 1981. 
  6. [5] Miller - Riemann's hypothesis and tests for primality, Journal of computer and system sciences13 (1976), pp. 300-317. Zbl0349.68025MR480295
  7. [6] Rabin - Probabilistic algorithms for testing primality, J. Number theory12 (1980), pp. 128-138. Zbl0426.10006MR566880
  8. [7] Shanks - Squfof, a fast factoring method, à paraître. 
  9. [8] Williams - Primality testing on a computer, Ars combinatoria, 5 (1978), pp. 127-185. Zbl0406.10008MR504864
  10. [9] Wunderlich - A running time analysis of Brillhart's continued fraction method, in Proceedings of the Number Theory Conference in Carbondale (1979), SpringerLecture Notes n°751. Zbl0416.10002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.