The time-dependent Born-Oppenheimer approximation

Gianluca Panati; Herbert Spohn; Stefan Teufel

ESAIM: Mathematical Modelling and Numerical Analysis (2007)

  • Volume: 41, Issue: 2, page 297-314
  • ISSN: 0764-583X

Abstract

top
We explain why the conventional argument for deriving the time-dependent Born-Oppenheimer approximation is incomplete and review recent mathematical results, which clarify the situation and at the same time provide a systematic scheme for higher order corrections. We also present a new elementary derivation of the correct second-order time-dependent Born-Oppenheimer approximation and discuss as applications the dynamics near a conical intersection of potential surfaces and reactive scattering.

How to cite

top

Panati, Gianluca, Spohn, Herbert, and Teufel, Stefan. "The time-dependent Born-Oppenheimer approximation." ESAIM: Mathematical Modelling and Numerical Analysis 41.2 (2007): 297-314. <http://eudml.org/doc/250020>.

@article{Panati2007,
abstract = { We explain why the conventional argument for deriving the time-dependent Born-Oppenheimer approximation is incomplete and review recent mathematical results, which clarify the situation and at the same time provide a systematic scheme for higher order corrections. We also present a new elementary derivation of the correct second-order time-dependent Born-Oppenheimer approximation and discuss as applications the dynamics near a conical intersection of potential surfaces and reactive scattering. },
author = {Panati, Gianluca, Spohn, Herbert, Teufel, Stefan},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Schrödinger equation; Born-Oppenheimer approximation; adiabatic methods; almost-invariant subspace.},
language = {eng},
month = {6},
number = {2},
pages = {297-314},
publisher = {EDP Sciences},
title = {The time-dependent Born-Oppenheimer approximation},
url = {http://eudml.org/doc/250020},
volume = {41},
year = {2007},
}

TY - JOUR
AU - Panati, Gianluca
AU - Spohn, Herbert
AU - Teufel, Stefan
TI - The time-dependent Born-Oppenheimer approximation
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2007/6//
PB - EDP Sciences
VL - 41
IS - 2
SP - 297
EP - 314
AB - We explain why the conventional argument for deriving the time-dependent Born-Oppenheimer approximation is incomplete and review recent mathematical results, which clarify the situation and at the same time provide a systematic scheme for higher order corrections. We also present a new elementary derivation of the correct second-order time-dependent Born-Oppenheimer approximation and discuss as applications the dynamics near a conical intersection of potential surfaces and reactive scattering.
LA - eng
KW - Schrödinger equation; Born-Oppenheimer approximation; adiabatic methods; almost-invariant subspace.
UR - http://eudml.org/doc/250020
ER -

References

top
  1. D.E. Adelman, N.E. Shafer, D.A.V. Kliner and R.N. Zare, Measurement of relative state-to-state rate constants for the reaction D + H 2 ( v , j ) HD ( v , j ) + H . J. Chem. Phys.97 (1992) 7323–7341.  
  2. M.V. Berry and R. Lim, The Born-Oppenheimer electric gauge force is repulsive near degeneracies. J. Phys. A23 (1990) L655–L657.  
  3. A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu and J. Zwanziger, The geometric phase in quantum systems. Texts and Monographs in Physics, Springer, Heidelberg (2003).  
  4. M. Born and R. Oppenheimer, Zur Quantentheorie der Molekeln. Ann. Phys. (Leipzig)84 (1927) 457–484.  
  5. R. Brummelhuis and J. Nourrigat, Scattering amplitude for Dirac operators. Comm. Partial Differential Equations24 (1999) 377–394.  
  6. Y. Colin de Verdière, M. Lombardi and C. Pollet, The microlocal Landau-Zener formula. Ann. Inst. H. Poincaré Phys. Theor.71 (1999) 95-127.  
  7. J.-M. Combes, P. Duclos and R. Seiler, The Born-Oppenheimer approximation, in Rigorous Atomic and Molecular Physics, G. Velo, A. Wightman Eds., New York, Plenum (1981) 185–212.  
  8. C. Emmerich and A. Weinstein, Geometry of the transport equation in multicomponent WKB approximations. Commun. Math. Phys.176 (1996) 701–711.  
  9. C. Fermanian-Kammerer and P. Gérard, Mesures semi-classiques et croisement de modes. Bull. Soc. Math. France130 (2002) 123–168.  
  10. C. Fermanian-Kammerer and C. Lasser, Wigner measures and codimension 2 crossings. J. Math. Phys.44 (2003) 507–527.  
  11. G.A. Hagedorn, A time dependent Born-Oppenheimer approximation. Commun. Math. Phys.77 (1980) 1–19.  
  12. G.A. Hagedorn, High order corrections to the time-dependent Born-Oppenheimer approximation. I. Smooth potentials. Ann. Math.124 (1986) 571–590.  
  13. G.A. Hagedorn, High order corrections to the time-independent Born-Oppenheimer approximation. I. Smooth potentials. Ann. Inst. H. Poincaré Sect. A 47 (1987) 1–19.  
  14. G.A. Hagedorn, High order corrections to the time-dependent Born-Oppenheimer approximation. II. Coulomb systems. Comm. Math. Phys.117 (1988) 387–403.  
  15. G.A. Hagedorn, Molecular propagation through electron energy level crossings, Memoirs of the American Mathematical Society 111 (1994).  
  16. G.A. Hagedorn and A. Joye, A time-dependent Born-Oppenheimer approximation with exponentially small error estimates. Commun. Math. Phys.223 (2001) 583–626.  
  17. T. Kato, On the adiabatic theorem of quantum mechanics. Phys. Soc. Jap.5 (1950) 435–439.  
  18. M. Klein, A. Martinez, R. Seiler and X.P. Wang, On the Born-Oppenheimer expansion for polyatomic molecules. Commun. Math. Phys.143 (1992) 607–639.  
  19. C. Lasser and S. Teufel, Propagation through conical crossings: an asymptotic transport equation and numerical experiments, Commun. Pure Appl. Math.58 (2005) 1188–1230.  
  20. R.G. Littlejohn and W.G. Flynn, Geometric phases in the asymptotic theory of coupled wave equations. Phys. Rev. A44 (1991) 5239–5255.  
  21. A. Martinez and V. Sordoni, A general reduction scheme for the time-dependent Born-Oppenheimer approximation. C. R. Acad. Sci. Paris, Sér. I334 (2002) 185–188.  
  22. C.A. Mead and D.G. Truhlar, On the determination of Born-Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei. J. Chem. Phys.70 (1979) 2284–2296.  
  23. G. Nenciu and V. Sordoni, Semiclassical limit for multistate Klein-Gordon systems: almost invariant subspaces and scattering theory. J. Math. Phys.45 (2004) 3676–3696.  
  24. J. von Neumann and E.P. Wigner. Z. Phys.30 (1929) 467.  
  25. G. Panati, H. Spohn and S. Teufel, Space-adiabatic perturbation theory in quantum dynamics. Phys. Rev. Lett.88 (2002) 250405.  
  26. G. Panati, H. Spohn and S. Teufel, Space-adiabatic perturbation theory. Adv. Theor. Math. Phys.7 (2003) 145–204.  
  27. J. Sjöstrand, Projecteurs adiabatiques du point de vue pseudodifferéntiel. C. R. Acad. Sci. Paris, Sér. I317 (1993) 217–220.  
  28. V. Sordoni, Reduction scheme for semiclassical operator-valued Schrödinger type equation and application to scattering. Comm. Partial Differential Equations28 (2003) 1221–1236.  
  29. H. Spohn and S. Teufel, Adiabatic decoupling and time-dependent Born-Oppenheimer theory. Commun. Math. Phys.224 (2001) 113–132.  
  30. S. Teufel, Adiabatic perturbation theory in quantum dynamics, Lecture Notes in Mathematics 1821. Springer (2003).  
  31. S. Weigert and R.G. Littlejohn, Diagonalization of multicomponent wave equations with a Born-Oppenheimer example. Phys. Rev. A47 (1993) 3506–3512.  
  32. Y.-S.M. Wu and A. Kupperman, Prediction of the effect of the geometric phase on product rotational state distributions and integral cross sections. Chem. Phys. Lett.201 (1993) 178–186.  
  33. L. Yin and C.A. Mead, Magnetic screening of nuclei by electrons as an effect of geometric vector potential. J. Chem. Phys.100 (1994) 8125–8131.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.