[unknown]

Laura Geatti[1]; Andrea Iannuzzi[1]

  • [1] Università di Roma “Tor Vergata” Via della Ricerca Scientifica I-00133 Roma (Italy)

Annales de l’institut Fourier (0)

  • Volume: 0, Issue: 0, page 1-32
  • ISSN: 0373-0956

How to cite

top

Geatti, Laura, and Iannuzzi, Andrea. "null." Annales de l’institut Fourier 0.0 (0): 1-32. <http://eudml.org/doc/275307>.

@article{Geatti0,
affiliation = {Università di Roma “Tor Vergata” Via della Ricerca Scientifica I-00133 Roma (Italy); Università di Roma “Tor Vergata” Via della Ricerca Scientifica I-00133 Roma (Italy)},
author = {Geatti, Laura, Iannuzzi, Andrea},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-32},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275307},
volume = {0},
year = {0},
}

TY - JOUR
AU - Geatti, Laura
AU - Iannuzzi, Andrea
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 32
LA - eng
UR - http://eudml.org/doc/275307
ER -

References

top
  1. D. N. Akhiezer, S. G. Gindikin, On Stein extensions of real symmetric spaces, Math. Ann. 286 (1990), 1-12 Zbl0681.32022
  2. Theodor Bröcker, Tammo tom Dieck, Representations of compact Lie groups, 98 (1985), Springer-Verlag, New York Zbl0581.22009
  3. Ferdinand Docquier, Hans Grauert, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann. 140 (1960), 94-123 Zbl0095.28004
  4. L. Geatti, A. Iannuzzi, Orbit structure of a distinguished Stein invariant domain in the complexification of a Hermitian symmetric space., Math. Z. 278 (2014), 769-793 Zbl1314.32031
  5. Laura Geatti, Invariant domains in the complexification of a noncompact Riemannian symmetric space, J. Algebra 251 (2002), 619-685 Zbl1018.32030
  6. Laura Geatti, Andrea Iannuzzi, Univalence of equivariant Riemann domains over the complexifications of rank-one Riemannian symmetric spaces, Pacific J. Math. 238 (2008), 275-330 Zbl1156.32015
  7. Simon Gindikin, Bernhard Krötz, Invariant Stein domains in Stein symmetric spaces and a nonlinear complex convexity theorem, Int. Math. Res. Not. (2002), 959-971 Zbl1011.32018
  8. Robert C. Gunning, Introduction to holomorphic functions of several variables. Vol. I, (1990), Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA Zbl0699.32001
  9. Lars Hörmander, An introduction to complex analysis in several variables, (1973), North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York Zbl0271.32001
  10. Anthony W. Knapp, Lie groups beyond an introduction, 140 (2002), Birkhäuser Boston, Inc., Boston, MA Zbl1075.22501
  11. Bernhard Krötz, Domains of holomorphy for irreducible unitary representations of simple Lie groups, Invent. Math. 172 (2008), 277-288 Zbl1148.22009
  12. Bernhard Krötz, Eric Opdam, Analysis on the crown domain, Geom. Funct. Anal. 18 (2008), 1326-1421 Zbl1189.22008
  13. Bernhard Krötz, Robert J. Stanton, Holomorphic extensions of representations. I. Automorphic functions, Ann. of Math. (2) 159 (2004), 641-724 Zbl1053.22009
  14. Bernhard Krötz, Robert J. Stanton, Holomorphic extensions of representations. II. Geometry and harmonic analysis, Geom. Funct. Anal. 15 (2005), 190-245 Zbl1078.22009
  15. Karl-Hermann Neeb, On the complex and convex geometry of Ol ' shanskiĭ semigroups, Ann. Inst. Fourier (Grenoble) 48 (1998), 149-203 Zbl0901.22003
  16. Karl-Hermann Neeb, On the complex geometry of invariant domains in complexified symmetric spaces, Ann. Inst. Fourier (Grenoble) 49 (1999), vi, x, 177-225 Zbl0921.22003
  17. Maxwell Rosenlicht, On quotient varieties and the affine embedding of certain homogeneous spaces, Trans. Amer. Math. Soc. 101 (1961), 211-223 Zbl0111.17902
  18. Hugo Rossi, On envelopes of holomorphy, Comm. Pure Appl. Math. 16 (1963), 9-17 Zbl0113.06001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.