[unknown]
Laura Geatti[1]; Andrea Iannuzzi[1]
- [1] Università di Roma “Tor Vergata” Via della Ricerca Scientifica I-00133 Roma (Italy)
Annales de l’institut Fourier (0)
- Volume: 0, Issue: 0, page 1-32
- ISSN: 0373-0956
Access Full Article
topHow to cite
topGeatti, Laura, and Iannuzzi, Andrea. "null." Annales de l’institut Fourier 0.0 (0): 1-32. <http://eudml.org/doc/275307>.
@article{Geatti0,
affiliation = {Università di Roma “Tor Vergata” Via della Ricerca Scientifica I-00133 Roma (Italy); Università di Roma “Tor Vergata” Via della Ricerca Scientifica I-00133 Roma (Italy)},
author = {Geatti, Laura, Iannuzzi, Andrea},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-32},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275307},
volume = {0},
year = {0},
}
TY - JOUR
AU - Geatti, Laura
AU - Iannuzzi, Andrea
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 32
LA - eng
UR - http://eudml.org/doc/275307
ER -
References
top- D. N. Akhiezer, S. G. Gindikin, On Stein extensions of real symmetric spaces, Math. Ann. 286 (1990), 1-12 Zbl0681.32022
- Theodor Bröcker, Tammo tom Dieck, Representations of compact Lie groups, 98 (1985), Springer-Verlag, New York Zbl0581.22009
- Ferdinand Docquier, Hans Grauert, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann. 140 (1960), 94-123 Zbl0095.28004
- L. Geatti, A. Iannuzzi, Orbit structure of a distinguished Stein invariant domain in the complexification of a Hermitian symmetric space., Math. Z. 278 (2014), 769-793 Zbl1314.32031
- Laura Geatti, Invariant domains in the complexification of a noncompact Riemannian symmetric space, J. Algebra 251 (2002), 619-685 Zbl1018.32030
- Laura Geatti, Andrea Iannuzzi, Univalence of equivariant Riemann domains over the complexifications of rank-one Riemannian symmetric spaces, Pacific J. Math. 238 (2008), 275-330 Zbl1156.32015
- Simon Gindikin, Bernhard Krötz, Invariant Stein domains in Stein symmetric spaces and a nonlinear complex convexity theorem, Int. Math. Res. Not. (2002), 959-971 Zbl1011.32018
- Robert C. Gunning, Introduction to holomorphic functions of several variables. Vol. I, (1990), Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA Zbl0699.32001
- Lars Hörmander, An introduction to complex analysis in several variables, (1973), North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York Zbl0271.32001
- Anthony W. Knapp, Lie groups beyond an introduction, 140 (2002), Birkhäuser Boston, Inc., Boston, MA Zbl1075.22501
- Bernhard Krötz, Domains of holomorphy for irreducible unitary representations of simple Lie groups, Invent. Math. 172 (2008), 277-288 Zbl1148.22009
- Bernhard Krötz, Eric Opdam, Analysis on the crown domain, Geom. Funct. Anal. 18 (2008), 1326-1421 Zbl1189.22008
- Bernhard Krötz, Robert J. Stanton, Holomorphic extensions of representations. I. Automorphic functions, Ann. of Math. (2) 159 (2004), 641-724 Zbl1053.22009
- Bernhard Krötz, Robert J. Stanton, Holomorphic extensions of representations. II. Geometry and harmonic analysis, Geom. Funct. Anal. 15 (2005), 190-245 Zbl1078.22009
- Karl-Hermann Neeb, On the complex and convex geometry of Olshanskiĭ semigroups, Ann. Inst. Fourier (Grenoble) 48 (1998), 149-203 Zbl0901.22003
- Karl-Hermann Neeb, On the complex geometry of invariant domains in complexified symmetric spaces, Ann. Inst. Fourier (Grenoble) 49 (1999), vi, x, 177-225 Zbl0921.22003
- Maxwell Rosenlicht, On quotient varieties and the affine embedding of certain homogeneous spaces, Trans. Amer. Math. Soc. 101 (1961), 211-223 Zbl0111.17902
- Hugo Rossi, On envelopes of holomorphy, Comm. Pure Appl. Math. 16 (1963), 9-17 Zbl0113.06001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.