Salvetti complex, spectral sequences and cohomology of Artin groups
Annales de la faculté des sciences de Toulouse Mathématiques (2014)
- Volume: 23, Issue: 2, page 267-296
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topCallegaro, Filippo. "Salvetti complex, spectral sequences and cohomology of Artin groups." Annales de la faculté des sciences de Toulouse Mathématiques 23.2 (2014): 267-296. <http://eudml.org/doc/275317>.
@article{Callegaro2014,
abstract = {The aim of this short survey is to give a quick introduction to the Salvetti complex as a tool for the study of the cohomology of Artin groups. In particular we show how a spectral sequence induced by a filtration on the complex provides a very natural and useful method to study recursively the cohomology of Artin groups, simplifying many computations. In the last section some examples of applications are presented.},
author = {Callegaro, Filippo},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {cohomology of Artin groups; Salvetti complex; spectral sequences; arrangements of hyperplanes; homology of braid groups},
language = {eng},
month = {3},
number = {2},
pages = {267-296},
publisher = {Université Paul Sabatier, Toulouse},
title = {Salvetti complex, spectral sequences and cohomology of Artin groups},
url = {http://eudml.org/doc/275317},
volume = {23},
year = {2014},
}
TY - JOUR
AU - Callegaro, Filippo
TI - Salvetti complex, spectral sequences and cohomology of Artin groups
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2014/3//
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 2
SP - 267
EP - 296
AB - The aim of this short survey is to give a quick introduction to the Salvetti complex as a tool for the study of the cohomology of Artin groups. In particular we show how a spectral sequence induced by a filtration on the complex provides a very natural and useful method to study recursively the cohomology of Artin groups, simplifying many computations. In the last section some examples of applications are presented.
LA - eng
KW - cohomology of Artin groups; Salvetti complex; spectral sequences; arrangements of hyperplanes; homology of braid groups
UR - http://eudml.org/doc/275317
ER -
References
top- Artin (E.).— Theorie des zöpfe, Abh. Math. Sem. Univ. Hamburg 4, p. 47-72 (1925). Zbl51.0450.01MR3069440
- Brieskorn (E.).— Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math. 12, p. 57-61 (1971). Zbl0204.56502MR293615
- Brieskorn (E.).— Sur les groupes de tresses [d’après V. I. Arnol’d], Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, Springer, Berlin, (1973), p. 21-44. Lecture Notes in Math., Vol. 317. Zbl0277.55003MR422674
- Brown (K. S.).— Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1994, Corrected reprint of the 1982 original. Zbl0584.20036MR1324339
- Björner (A.), Ziegler (G. M.).— Combinatorial stratification of complex arrangements, J. Amer. Math. Soc. 5, no. 1, p. 105-149 (1992). Zbl0754.52003MR1119198
- Callegaro (F.).— On the cohomology of Artin groups in local systems and the associated Milnor fiber, J. Pure Appl. Algebra 197, no. 1-3, p. 323-332 (2005). Zbl1109.20027MR2123992
- Callegaro (F.).— The homology of the Milnor fiber for classical braid groups, Algebr. Geom. Topol. 6, p. 1903-1923 (electronic) (2006). Zbl1166.20044MR2263054
- Callegaro (F.), Cohen (F.), Salvetti (M.).— The cohomology of the braid group and of with coefficients in a geometric representation, Quart. J. Math. 64, p. 847-889 (2013). Zbl1295.20057MR3094502
- Charney (R.), Davis (M. W.).— The -problem for hyperplane complements associated to infinite reflection groups, J. Amer. Math. Soc. 8, no. 3, p. 597-627 (1995). Zbl0833.51006MR1303028
- Cohen (D.), Denham (G.), Falk (M.), Suciu (A. I.), Terao (H.), Yuzvinsky (S.).— Complex Arrangements: Algebra, Geometry, Topology, 2009 (work in progress), available at http://www.math. uiuc.edu/~schenck/cxarr.pdf.
- Callegaro (F.), Moroni (D.), Salvetti (M.).— Cohomology of affine Artin groups and applications, Trans. Amer. Math. Soc. 360, no. 8, p. 4169-4188 (2008). Zbl1191.20056MR2395168
- Callegaro (F.), Moroni (D.), Salvetti (M.).— The problem for the affine Artin group of type and its cohomology, J. Eur. Math. Soc. (JEMS) 12, no. 1, p. 1-22 (2010). Zbl1190.20042MR2578601
- De Concini (C.), C. Procesi (C.), M. Salvetti (M.).— Arithmetic properties of the cohomology of braid groups, Topology 40, no. 4, p. 739-751 (2001). Zbl0999.20046MR1851561
- De Concini (C.), Salvetti (M.).— Cohomology of Artin groups: Addendum: “The homotopy type of Artin groups" [Math. Res. Lett. 1, no. 5, p. 565-577 (1994)] by Salvetti, Math. Res. Lett. 3, no. 2, p. 293-297 (1996). Zbl0870.57004MR1386847
- De Concini (C.), Salvetti (M.), Stumbo (F.).— The top-cohomology of Artin groups with coefficients in rank-1 local systems over , Topology Appl. 78, no. 1-2, p. 5-20 (1997), Special issue on braid groups and related topics (Jerusalem, 1995). Zbl0878.55003MR1465022
- Deligne (P.).— Les immeubles des groupes de tresses généralisés, Invent. Math. 17, p. 273-302 (1972). Zbl0238.20034MR422673
- Dickson (L. E.).— A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12, no. 1, p. 75-98 (1911). Zbl42.0136.01MR1500882
- Fox (R.), L. Neuwirth (L.).— The braid groups, Math. Scand. 10, p. 119-126 (1962). Zbl0117.41101MR150755
- Frenkel’ (È. V.).— Cohomology of the commutator subgroup of the braid group, Funktsional. Anal. i Prilozhen. 22, no. 3, p. 91-92 (1988). Zbl0675.20042MR961774
- Fuks (D. B.).— Cohomology of the braid group mod 2, Funct. Anal. Appl. 4, no. 2, p. 143-151 (1970). Zbl0222.57031MR274463
- Gel’fand (I. M.), Rybnikov (G. L.).— Algebraic and topological invariants of oriented matroids, Dokl. Akad. Nauk SSSR 307, no. 4, p. 791-795 (1989). Zbl0717.33009MR1020668
- Humphreys (J. E.).— Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge (1990). Zbl0725.20028MR1066460
- Markaryan (N. S.).— Homology of braid groups with nontrivial coefficients, Mat. Zametki 59, no. 6, p. 846-854, 960 (1996). Zbl0884.55016MR1445470
- Matsumoto (H.).— Générateurs et relations des groupes de Weyl généralisés, C. R. Acad. Sci. Paris 258, p. 3419-3422 (1964). Zbl0128.25202MR183818
- Milnor (J.).— Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J. (1968). Zbl0184.48405MR239612
- Milnor (J.).— Introduction to algebraic -theory, Princeton University Press, Princeton, N.J., Annals of Mathematics Studies, No. 72 (1971). Zbl0237.18005MR349811
- Magnus (W.), Abraham Karrass (A.), Solitar (D.).— Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers [John Wiley & Sons, Inc.], New York-London-Sydney (1966). Zbl0362.20023MR207802
- Orlik (P.), Terao (H.).— Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, Springer-Verlag, Berlin (1992). Zbl0757.55001MR1217488
- Paris (L.).— conjecture for Artin groups, Proceedings of the conference “Arrangements in Pyrénées" held in Pau (France) from 11th to 15th June (2012), conjecture for Artin groups, Ann. Fac. Sci. Toulouse Math. (6) 23, no. 2 (2014).
- Reiner (V.).— Signed permutation statistics, Eur. J. Comb 14, p. 553-567 (1993). Zbl0793.05005MR1248063
- Salvetti (M.).— Topology of the complement of real hyperplanes in , Invent. Math. 88, no. 3, p. 603-618 (1987). Zbl0594.57009MR884802
- Salvetti (M.).— The homotopy type of Artin groups, Math. Res. Lett. 1, no. 5, p. 565-577 (1994). Zbl0847.55011MR1295551
- Solomon (L.).— The orders of the finite Chevalley groups, J. Algebra 3, p. 376-393 (1966). Zbl0151.02003MR199275
- Spanier (E. H.).— Algebraic topology, McGraw-Hill Book Co., New York (1966). Zbl0477.55001MR210112
- Steinberg (R.).— On Dickson’s theorem on invariants, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34, no. 3, p. 699-707 (1987). Zbl0656.20052MR927606
- Tits (J.).— Le problème des mots dans les groupes de Coxeter, Symposia Mathematica (INDAM, Rome, 1967/68), vol. 1, Academic Press London, p. 175-185 (1969). Zbl0206.03002MR254129
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.