Salvetti complex, spectral sequences and cohomology of Artin groups

Filippo Callegaro

Annales de la faculté des sciences de Toulouse Mathématiques (2014)

  • Volume: 23, Issue: 2, page 267-296
  • ISSN: 0240-2963

Abstract

top
The aim of this short survey is to give a quick introduction to the Salvetti complex as a tool for the study of the cohomology of Artin groups. In particular we show how a spectral sequence induced by a filtration on the complex provides a very natural and useful method to study recursively the cohomology of Artin groups, simplifying many computations. In the last section some examples of applications are presented.

How to cite

top

Callegaro, Filippo. "Salvetti complex, spectral sequences and cohomology of Artin groups." Annales de la faculté des sciences de Toulouse Mathématiques 23.2 (2014): 267-296. <http://eudml.org/doc/275317>.

@article{Callegaro2014,
abstract = {The aim of this short survey is to give a quick introduction to the Salvetti complex as a tool for the study of the cohomology of Artin groups. In particular we show how a spectral sequence induced by a filtration on the complex provides a very natural and useful method to study recursively the cohomology of Artin groups, simplifying many computations. In the last section some examples of applications are presented.},
author = {Callegaro, Filippo},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {cohomology of Artin groups; Salvetti complex; spectral sequences; arrangements of hyperplanes; homology of braid groups},
language = {eng},
month = {3},
number = {2},
pages = {267-296},
publisher = {Université Paul Sabatier, Toulouse},
title = {Salvetti complex, spectral sequences and cohomology of Artin groups},
url = {http://eudml.org/doc/275317},
volume = {23},
year = {2014},
}

TY - JOUR
AU - Callegaro, Filippo
TI - Salvetti complex, spectral sequences and cohomology of Artin groups
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2014/3//
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 2
SP - 267
EP - 296
AB - The aim of this short survey is to give a quick introduction to the Salvetti complex as a tool for the study of the cohomology of Artin groups. In particular we show how a spectral sequence induced by a filtration on the complex provides a very natural and useful method to study recursively the cohomology of Artin groups, simplifying many computations. In the last section some examples of applications are presented.
LA - eng
KW - cohomology of Artin groups; Salvetti complex; spectral sequences; arrangements of hyperplanes; homology of braid groups
UR - http://eudml.org/doc/275317
ER -

References

top
  1. Artin (E.).— Theorie des zöpfe, Abh. Math. Sem. Univ. Hamburg 4, p. 47-72 (1925). Zbl51.0450.01MR3069440
  2. Brieskorn (E.).— Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math. 12, p. 57-61 (1971). Zbl0204.56502MR293615
  3. Brieskorn (E.).— Sur les groupes de tresses [d’après V. I. Arnol’d], Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, Springer, Berlin, (1973), p. 21-44. Lecture Notes in Math., Vol. 317. Zbl0277.55003MR422674
  4. Brown (K. S.).— Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1994, Corrected reprint of the 1982 original. Zbl0584.20036MR1324339
  5. Björner (A.), Ziegler (G. M.).— Combinatorial stratification of complex arrangements, J. Amer. Math. Soc. 5, no. 1, p. 105-149 (1992). Zbl0754.52003MR1119198
  6. Callegaro (F.).— On the cohomology of Artin groups in local systems and the associated Milnor fiber, J. Pure Appl. Algebra 197, no. 1-3, p. 323-332 (2005). Zbl1109.20027MR2123992
  7. Callegaro (F.).— The homology of the Milnor fiber for classical braid groups, Algebr. Geom. Topol. 6, p. 1903-1923 (electronic) (2006). Zbl1166.20044MR2263054
  8. Callegaro (F.), Cohen (F.), Salvetti (M.).— The cohomology of the braid group B 3 and of S L 2 ( ) with coefficients in a geometric representation, Quart. J. Math. 64, p. 847-889 (2013). Zbl1295.20057MR3094502
  9. Charney (R.), Davis (M. W.).— The K ( π , 1 ) -problem for hyperplane complements associated to infinite reflection groups, J. Amer. Math. Soc. 8, no. 3, p. 597-627 (1995). Zbl0833.51006MR1303028
  10. Cohen (D.), Denham (G.), Falk (M.), Suciu (A. I.), Terao (H.), Yuzvinsky (S.).— Complex Arrangements: Algebra, Geometry, Topology, 2009 (work in progress), available at http://www.math. uiuc.edu/~schenck/cxarr.pdf. 
  11. Callegaro (F.), Moroni (D.), Salvetti (M.).— Cohomology of affine Artin groups and applications, Trans. Amer. Math. Soc. 360, no. 8, p. 4169-4188 (2008). Zbl1191.20056MR2395168
  12. Callegaro (F.), Moroni (D.), Salvetti (M.).— The K ( π , 1 ) problem for the affine Artin group of type B ˜ n and its cohomology, J. Eur. Math. Soc. (JEMS) 12, no. 1, p. 1-22 (2010). Zbl1190.20042MR2578601
  13. De Concini (C.), C. Procesi (C.), M. Salvetti (M.).— Arithmetic properties of the cohomology of braid groups, Topology 40, no. 4, p. 739-751 (2001). Zbl0999.20046MR1851561
  14. De Concini (C.), Salvetti (M.).— Cohomology of Artin groups: Addendum: “The homotopy type of Artin groups" [Math. Res. Lett. 1, no. 5, p. 565-577 (1994)] by Salvetti, Math. Res. Lett. 3, no. 2, p. 293-297 (1996). Zbl0870.57004MR1386847
  15. De Concini (C.), Salvetti (M.), Stumbo (F.).— The top-cohomology of Artin groups with coefficients in rank-1 local systems over , Topology Appl. 78, no. 1-2, p. 5-20 (1997), Special issue on braid groups and related topics (Jerusalem, 1995). Zbl0878.55003MR1465022
  16. Deligne (P.).— Les immeubles des groupes de tresses généralisés, Invent. Math. 17, p. 273-302 (1972). Zbl0238.20034MR422673
  17. Dickson (L. E.).— A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12, no. 1, p. 75-98 (1911). Zbl42.0136.01MR1500882
  18. Fox (R.), L. Neuwirth (L.).— The braid groups, Math. Scand. 10, p. 119-126 (1962). Zbl0117.41101MR150755
  19. Frenkel’ (È. V.).— Cohomology of the commutator subgroup of the braid group, Funktsional. Anal. i Prilozhen. 22, no. 3, p. 91-92 (1988). Zbl0675.20042MR961774
  20. Fuks (D. B.).— Cohomology of the braid group mod 2, Funct. Anal. Appl. 4, no. 2, p. 143-151 (1970). Zbl0222.57031MR274463
  21. Gel’fand (I. M.), Rybnikov (G. L.).— Algebraic and topological invariants of oriented matroids, Dokl. Akad. Nauk SSSR 307, no. 4, p. 791-795 (1989). Zbl0717.33009MR1020668
  22. Humphreys (J. E.).— Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge (1990). Zbl0725.20028MR1066460
  23. Markaryan (N. S.).— Homology of braid groups with nontrivial coefficients, Mat. Zametki 59, no. 6, p. 846-854, 960 (1996). Zbl0884.55016MR1445470
  24. Matsumoto (H.).— Générateurs et relations des groupes de Weyl généralisés, C. R. Acad. Sci. Paris 258, p. 3419-3422 (1964). Zbl0128.25202MR183818
  25. Milnor (J.).— Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J. (1968). Zbl0184.48405MR239612
  26. Milnor (J.).— Introduction to algebraic K -theory, Princeton University Press, Princeton, N.J., Annals of Mathematics Studies, No. 72 (1971). Zbl0237.18005MR349811
  27. Magnus (W.), Abraham Karrass (A.), Solitar (D.).— Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers [John Wiley & Sons, Inc.], New York-London-Sydney (1966). Zbl0362.20023MR207802
  28. Orlik (P.), Terao (H.).— Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, Springer-Verlag, Berlin (1992). Zbl0757.55001MR1217488
  29. Paris (L.).— K ( π , 1 ) conjecture for Artin groups, Proceedings of the conference “Arrangements in Pyrénées" held in Pau (France) from 11th to 15th June (2012), K ( π , 1 ) conjecture for Artin groups, Ann. Fac. Sci. Toulouse Math. (6) 23, no. 2 (2014). 
  30. Reiner (V.).— Signed permutation statistics, Eur. J. Comb 14, p. 553-567 (1993). Zbl0793.05005MR1248063
  31. Salvetti (M.).— Topology of the complement of real hyperplanes in N , Invent. Math. 88, no. 3, p. 603-618 (1987). Zbl0594.57009MR884802
  32. Salvetti (M.).— The homotopy type of Artin groups, Math. Res. Lett. 1, no. 5, p. 565-577 (1994). Zbl0847.55011MR1295551
  33. Solomon (L.).— The orders of the finite Chevalley groups, J. Algebra 3, p. 376-393 (1966). Zbl0151.02003MR199275
  34. Spanier (E. H.).— Algebraic topology, McGraw-Hill Book Co., New York (1966). Zbl0477.55001MR210112
  35. Steinberg (R.).— On Dickson’s theorem on invariants, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34, no. 3, p. 699-707 (1987). Zbl0656.20052MR927606
  36. Tits (J.).— Le problème des mots dans les groupes de Coxeter, Symposia Mathematica (INDAM, Rome, 1967/68), vol. 1, Academic Press London, p. 175-185 (1969). Zbl0206.03002MR254129

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.