Variations on a theme of homotopy

Timothy Porter

Annales de la faculté des sciences de Toulouse Mathématiques (2013)

  • Volume: 22, Issue: 5, page 1045-1089
  • ISSN: 0240-2963


The aim of this article is to bring together various themes from fairly elementary homotopy theory and to examine them, in part, from a historical and philosophical viewpoint.

How to cite


Porter, Timothy. "Variations on a theme of homotopy." Annales de la faculté des sciences de Toulouse Mathématiques 22.5 (2013): 1045-1089. <>.

abstract = {The aim of this article is to bring together various themes from fairly elementary homotopy theory and to examine them, in part, from a historical and philosophical viewpoint.},
author = {Porter, Timothy},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
month = {12},
number = {5},
pages = {1045-1089},
publisher = {Université Paul Sabatier, Toulouse},
title = {Variations on a theme of homotopy},
url = {},
volume = {22},
year = {2013},

AU - Porter, Timothy
TI - Variations on a theme of homotopy
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2013/12//
PB - Université Paul Sabatier, Toulouse
VL - 22
IS - 5
SP - 1045
EP - 1089
AB - The aim of this article is to bring together various themes from fairly elementary homotopy theory and to examine them, in part, from a historical and philosophical viewpoint.
LA - eng
UR -
ER -


  1. Artin (M.), Mazur (B.).— Etale homotopy, Lecture Notes in Maths., no. 100, Springer-Verlag, Berlin (1969). Zbl0182.26001MR245577
  2. Batanin (M. A.).— “Homotopy coherent category theory and A -structures in monoidal categories", J. Pure. Appl. Alg. 123, p. 67-103 (1998). Zbl0892.18003MR1492896
  3. Baues (H. J.).— Algebraic homotopy, Cambridge Studies in Advanced Mathematics, vol. 15, Cambridge Univ. Press (1989). Zbl0688.55001MR985099
  4. Baues (H. J.).— Combinatorial homotopy and 4-dimensional complexes, Walter de Gruyter (1991). Zbl0716.55001MR1096295
  5. Baues (H. J.).— “Homotopy types", in Handbook of Algebraic Topology (I.M. James, ed.), Elsevier, p. 1-72 (1995). Zbl0869.55006MR1361886
  6. Boardman (J. M.), Vogt (R. M.).— Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Maths, no. 347, Springer-Verlag (1973). Zbl0285.55012MR420609
  7. Brown (E.).— “Proper homotopy theory in simplicial complexes", in Topology Conference (Virginia Polytech. Inst. and State Univ., Blacksburg, Va., 1973), 1974. Zbl0315.55020MR356041
  8. Brown (K. S.).— “Abstract homotopy theory and generalized sheaf cohomology", Trans. Amer. Math. Soc 186, p. 419-458 (1973). Zbl0245.55007MR341469
  9. Brown (R.).— “Crossed complexes and higher homotopy groupoids as noncommutative tools for higher dimensional local-to-global problems", in Handbook of Algebra (M. Hazewinkel, ed.), vol. 6, Elsevier B.V. North-Holland, p. 81-124 (2009). Zbl1214.18014MR2553657
  10. Christie (D. E.).— “Net homotopy for compacta", Trans. Amer. Math. Soc 56, p. 275-308 (1944). Zbl0060.41303MR10971
  11. Cisinski (D.-C.).— Les préfaisceaux comme modèles des types d’homotopie, Astérisque, vol. 308, Société Mathématique de France (2006). Zbl1111.18008
  12. Cordier (J.-M.).— “Sur la notion de diagramme homotopiquement cohérent", Cahiers de Top. Géom. Diff. 23, p. 93-112 (1982). Zbl0493.55009MR648798
  13. Cordier (J.-M.), Porter (T.).— “Vogt’s theorem on categories of homotopy coherent diagrams", Math. Proc. Cambridge Philos. Soc. 100, no. 1, p. 65-90 (1986). Zbl0603.55017MR838654
  14. Cordier (J.-M.), Porter (T.).— “Maps between homotopy coherent diagrams", Top. and its Appls. 28, p. 255-275 (1988). Zbl0655.55008MR931527
  15. Cordier (J.-M.), Porter (T.).— “Fibrant diagrams, rectifications and a construction of Loday", J. Pure. Applied Alg. 67, p. 111-124 (1990). Zbl0715.55012MR1080880
  16. Cordier (J.-M.), Porter (T.).— “Categorical aspects of equivariant homotopy", Applied Categorical Structures 4, p. 195-212 (1996). Zbl0855.18009MR1406098
  17. Cordier (J.-M.), Porter (T.).— “Homotopy coherent category theory", Trans. Amer. Math. Soc. 349, p. 1-54 (1997). Zbl0865.18006MR1376543
  18. Cordier (J.-M.), Porter (T.).— Shape theory, categorical methods of approximation, Dover (reprint of earlier 1989 edition) (2008). Zbl1243.18001MR1000348
  19. Dowker (C. H.).— “Homology groups of relations", Annals of Maths 56, p. 84Ð95 (1952). Zbl0046.40402MR48030
  20. Edwards (D. A.), Hastings (H. M.).— Čech and Steenrod homotopy theories with applications to geometric topology, Lecture Notes in Maths, vol. 542, Springer-Verlag, (1976). Zbl0334.55001MR428322
  21. Fantham (P. H. H.), Moore (E. J.).— “Groupoid enriched categories and homotopy theory", Canad. J. Math. 35, no. 3, p. 385-416 (1983). Zbl0546.55026MR717131
  22. Fausk (H.), Isaksen (D.).— “Model structures on pro-categories", Homology, Homotopy and Applications 9, no. 1, p. 367-398 (2007). Zbl1117.55020MR2299804
  23. Friedlander (E. M.).— Etale homotopy of simplicial schemes, Annals of Mathematics Studies, vol. 104, Princeton University Press, Princeton, N.J. (1982). Zbl0538.55001MR676809
  24. Grandis (M.).— Directed algebraic topology, New Mathematical Monographs, vol. 13, Cambridge University Press, Cambridge, (2009), Models of non-reversible worlds. Zbl1176.55001MR2562859
  25. Gratus (J.), Porter (T.).— “A spatial view of information", Theoretical Computer Science 365, p. 206-215 (2006). Zbl1118.68186MR2269453
  26. Grothendieck (A.).— “Pursuing stacks", manuscript, 600 + pages, (1983). 
  27. Grothendieck (A.).— Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris), 3, Société Mathématique de France, Paris, 2003, Séminaire de géométrie algébrique du Bois Marie 1960Ð61. Directed by A. Grothendieck, With two papers by M. Raynaud, updated and annotated reprint of the 1971 original [Lecture Notes in Math., 224, Springer, Berlin; (50 #7129)]. Zbl1039.14001
  28. Guiraud (Y.), Malbos (P.).— “Coherence in monoidal track categories", Mathematical Structures in Computer Science (2011), p. (to appear). Zbl1264.18007MR2997506
  29. Guiraud (Y.), Malbos (P.).— “Identities among relations for higher-dimensional rewriting systems", Séminaires et Congrès, SMF 26, p. 145-161 (2011). Zbl1277.18003
  30. Isaksen (D. C.).— “A model structure on the category of pro-simplicial sets", Trans. Amer. Math. Soc. 353, no. 7, p. 2805Ð2841 (electronic) (2001). Zbl0978.55014MR1828474
  31. Isaksen (D. C.).— “Strict model structures for pro-categories", in Categorical decomposition techniques in algebraic topology (Isle of Skye, 2001), Progr. Math., vol. 215, Birkhäuser, Basel, p. 179-198 (2004). Zbl1049.18008MR2039766
  32. Joyal (A.).— “Quasi-categories and Kan complexes", J. Pure Applied Alg. 175, p. 207-222 (2002). Zbl1015.18008MR1935979
  33. Joyal (A.) “The theory of quasi-categories and its applications", in Advanced Course on Simplicial Methods in Higher Categories (C. Casacuberta & J. Kock, eds.), i-Math, vol. II, Centre de Recerca Matemàtica, HigherCategories/hc2.pdf, 2008. 
  34. Kamps (K. H.).— “On exact sequences in homotopy theory", Topol. Appl. Sympos. Bydva (Yugoslavia), p. 136-141 (1972). Zbl0276.18011MR353302
  35. Kamps (K. H.), Porter (T.).— Abstract homotopy and simple homotopy theory, World Scientific Publishing Co. Inc., River Edge, NJ (1997). Zbl0890.55014MR1464944
  36. Kan (D. M.).— “Abstract homotopy I", Proc. Nat. Acad. Sci. USA 41, p. 1092-1096 (1955). Zbl0065.38601MR79762
  37. Kan (D. M.).— “On c.s.s complexes", Amer J. Math. 79, p. 449-476 (1958). Zbl0078.36901MR90047
  38. Lurie (J.).— Higher topos theory, Annals of mathematics studies, no. 170, Princeton University Press (2009). Zbl1175.18001MR2522659
  39. Maltsiniotis (G.).— “La catégorie cubique avec connexions est une catégorie test stricte", Homology, Homotopy and Applications 11, no. 2, p. 309-326 (2009). Zbl1213.18009MR2591923
  40. Mardešić (S.).— “Absolute neighborhood retracts and shape theory", in History of Topology (I. M. James, ed.), Elsevier Science, Amsterdam, p. 247-268 (1999). Zbl0973.54002
  41. Mardešić (S.).— Strong shape and homology, Springer (2000). Zbl0939.55007MR1740831
  42. nLab.— “nLab", at 
  43. Porter (T.).— “Abstract homotopy theory in procategories", Cahiers Top. Géom. Diff. 17, no. 2, p. 113Ð124 (1976). Zbl0349.18012MR445496
  44. Porter (T.).— “Coherent prohomotopical algebra", Cahiers Top. Géom. Diff. 18, no. 2, p. 139-179 (1977). Zbl0364.18009MR470033
  45. Porter (T.).— “Coherent prohomotopy theory", Cahiers Top. Géom. Diff. 19, no. 1, p. 3-46 (1978). Zbl0387.55013MR496541
  46. Porter (T.).— “Proper homotopy theory", in Handbook of Algebraic Topology, North-Holland, Amsterdam, p. 127-167 (1995). Zbl1004.55004MR1361888
  47. Porter (T.).— “What ‘shape’ is space-time?", 0210075 (2002). 
  48. Porter (T.).— “Abstract homotopy theory, the interaction of category theory and homotopy theory", Cubo Matematica Educacional 5, p. 115-165 (2003). Zbl05508171MR1957710
  49. Porter (T.).— “ 𝒮 -categories, 𝒮 -groupoids, Segal categories and quasicategories", http: // (2004). 
  50. Porter (T.).— “Enriched categories and models for spaces of evolving states", Theoretical Computer Science 405, no. 1-2, p. 88Ð100 (2008). Zbl1148.18004MR2454495
  51. Porter (T.).— “The Crossed Menagerie: an introduction to crossed gadgetry and co-homology in algebra and topology", 2011, (available from the n-Lab, http: // 
  52. Quigley (J. B.).— “Shape theory, Approaching and a Hurewicz theorem", Ph.D. Thesis, Indiana University (1970). MR2620218
  53. Quigley (J. B.).— “An exact sequence from the nth to the ( n - 1 ) -st fundamental group", Fund. Math. 77, no. 3, p. 195Ð210 (1973). Zbl0247.55010MR331379
  54. Quigley (J. B.).— “Equivalence of fundamental and approaching groups of movable pointed compacta", Fund. Math. 91, no. 2, p. 73Ð83 (1976). Zbl0328.55005MR413098
  55. Quillen (D. G.).— Homotopical algebra, Lecture Notes in Maths., no. 53, Springer-Verlag, (1967). Zbl0168.20903MR223432
  56. Vogt (R.).— “Homotopy limits and colimits", Math. Z. 134, p. 11-52 (1973). Zbl0276.55006MR331376

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.