[unknown]
Hart F. Smith[1]; Maciej Zworski[2]
- [1] Department of Mathematics University of Washington Seattle, WA 98195 (USA)
- [2] Department of Mathematics University of California Berkeley, CA 94720 (USA)
Annales de l’institut Fourier (0)
- Volume: 0, Issue: 0, page 1-21
- ISSN: 0373-0956
Access Full Article
topHow to cite
topSmith, Hart F., and Zworski, Maciej. "null." Annales de l’institut Fourier 0.0 (0): 1-21. <http://eudml.org/doc/275331>.
@article{Smith0,
affiliation = {Department of Mathematics University of Washington Seattle, WA 98195 (USA); Department of Mathematics University of California Berkeley, CA 94720 (USA)},
author = {Smith, Hart F., Zworski, Maciej},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-21},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275331},
volume = {0},
year = {0},
}
TY - JOUR
AU - Smith, Hart F.
AU - Zworski, Maciej
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 21
LA - eng
UR - http://eudml.org/doc/275331
ER -
References
top- Aymeric Autin, Isoresonant complex-valued potentials and symmetries, Canad. J. Math. 63 (2011), 721-754 Zbl1220.31012
- Rodrigo Bañuelos, Antônio Sá Barreto, On the heat trace of Schrödinger operators, Comm. Partial Differential Equations 20 (1995), 2153-2164 Zbl0843.35016
- M. van den Berg, On the trace of the difference of Schrödinger heat semigroups, Proc. Roy. Soc. Edinburgh Sect. A 119 (1991), 169-175 Zbl0767.47022
- Jochen Brüning, On the compactness of isospectral potentials, Comm. Partial Differential Equations 9 (1984), 687-698 Zbl0547.58039
- T. Christiansen, Some lower bounds on the number of resonances in Euclidean scattering, Math. Res. Lett. 6 (1999), 203-211 Zbl0947.35102
- T. Christiansen, Several complex variables and the distribution of resonances in potential scattering, Comm. Math. Phys. 259 (2005), 711-728 Zbl1088.81093
- T. Christiansen, Schrödinger operators with complex-valued potentials and no resonances, Duke Math. J. 133 (2006), 313-323 Zbl1107.35094
- T. Christiansen, Isophasal, isopolar, and isospectral Schrödinger operators and elementary complex analysis, Amer. J. Math. 130 (2008), 49-58 Zbl1140.35005
- T. Christiansen, P. D. Hislop, The resonance counting function for Schrödinger operators with generic potentials, Math. Res. Lett. 12 (2005), 821-826 Zbl1155.35319
- T. Christiansen, P. D. Hislop, Maximal order of growth for the resonance counting functions for generic potentials in even dimensions, Indiana Univ. Math. J. 59 (2010), 621-660 Zbl1202.81199
- Kiril Datchev, Hamid Hezari, Resonant uniqueness of radial semiclassical Schrödinger operators, Appl. Math. Res. Express. AMRX (2012), 105-113 Zbl1239.35102
- Tien-Cuong Dinh, Duc-Viet Vu, Asymptotic number of scattering resonances for generic Schrödinger operators, Comm. Math. Phys. 326 (2014), 185-208 Zbl1294.47016
- Harold Donnelly, Compactness of isospectral potentials, Trans. Amer. Math. Soc. 357 (2005), 1717-1730 (electronic) Zbl1062.58033
- Semyon Dyatlov, Maciej Zworski, Mathematical theory of scattering resonances Zbl06502090
- Peter B. Gilkey, Asymptotic formulae in spectral geometry, (2004), Chapman & Hall/CRC, Boca Raton, FL Zbl1080.58023
- Laurent Guillopé, Asymptotique de la phase de diffusion pour l’opérateur de Schrödinger avec potentiel, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), 601-603 Zbl0487.35073
- Michael Hitrik, Iosif Polterovich, Regularized traces and Taylor expansions for the heat semigroup, J. London Math. Soc. (2) 68 (2003), 402-418 Zbl1167.35335
- Arne Jensen, High energy asymptotics for the total scattering phase in potential scattering theory, Functional-analytic methods for partial differential equations (Tokyo, 1989) 1450 (1990), 187-195, Springer, Berlin Zbl0723.35061
- Arne Jensen, Tosio Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J. 46 (1979), 583-611 Zbl0448.35080
- Evgeny Korotyaev, Inverse resonance scattering on the real line, Inverse Problems 21 (2005), 325-341 Zbl1074.34081
- H. P. McKean, P. van Moerbeke, The spectrum of Hill’s equation, Invent. Math. 30 (1975), 217-274 Zbl0319.34024
- Richard B. Melrose, Geometric scattering theory, (1995), Cambridge University Press, Cambridge Zbl0849.58071
- Antonio Sá Barreto, Remarks on the distribution of resonances in odd dimensional Euclidean scattering, Asymptot. Anal. 27 (2001), 161-170 Zbl1116.35344
- Antônio Sá Barreto, Maciej Zworski, Existence of resonances in potential scattering, Comm. Pure Appl. Math. 49 (1996), 1271-1280 Zbl0877.35087
- Michael E. Taylor, Partial differential equations III. Nonlinear equations, 117 (2011), Springer, New York Zbl1206.35004
- E. C. Titchmarsh, The theory of functions, (1958), Oxford University Press, Oxford Zbl0084.09401
- Yves Colin de Verdière, Une formule de traces pour l’opérateur de Schrödinger dans , Ann. Sci. École Norm. Sup. (4) 14 (1981), 27-39 Zbl0482.35068
- Yves Colin de Verdière, Semiclassical trace formulas and heat expansions, Anal. PDE 5 (2012), 693-703 Zbl1264.35156
- Maciej Zworski, Sharp polynomial bounds on the number of scattering poles, Duke Math. J. 59 (1989), 311-323 Zbl0705.35099
- Maciej Zworski, Poisson formulae for resonances, Séminaire sur les Équations aux Dérivées Partielles, 1996–1997 (1997), École Polytech., Palaiseau Zbl1255.35084
- Maciej Zworski, A remark on isopolar potentials, SIAM J. Math. Anal. 32 (2001), 1324-1326 (electronic) Zbl0988.34067
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.