Hart F. Smith[1]; Maciej Zworski[2]

  • [1] Department of Mathematics University of Washington Seattle, WA 98195 (USA)
  • [2] Department of Mathematics University of California Berkeley, CA 94720 (USA)

Annales de l’institut Fourier (0)

  • Volume: 0, Issue: 0, page 1-21
  • ISSN: 0373-0956

How to cite


Smith, Hart F., and Zworski, Maciej. "null." Annales de l’institut Fourier 0.0 (0): 1-21. <http://eudml.org/doc/275331>.

affiliation = {Department of Mathematics University of Washington Seattle, WA 98195 (USA); Department of Mathematics University of California Berkeley, CA 94720 (USA)},
author = {Smith, Hart F., Zworski, Maciej},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-21},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275331},
volume = {0},
year = {0},

AU - Smith, Hart F.
AU - Zworski, Maciej
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 21
LA - eng
UR - http://eudml.org/doc/275331
ER -


  1. Aymeric Autin, Isoresonant complex-valued potentials and symmetries, Canad. J. Math. 63 (2011), 721-754 Zbl1220.31012
  2. Rodrigo Bañuelos, Antônio Sá Barreto, On the heat trace of Schrödinger operators, Comm. Partial Differential Equations 20 (1995), 2153-2164 Zbl0843.35016
  3. M. van den Berg, On the trace of the difference of Schrödinger heat semigroups, Proc. Roy. Soc. Edinburgh Sect. A 119 (1991), 169-175 Zbl0767.47022
  4. Jochen Brüning, On the compactness of isospectral potentials, Comm. Partial Differential Equations 9 (1984), 687-698 Zbl0547.58039
  5. T. Christiansen, Some lower bounds on the number of resonances in Euclidean scattering, Math. Res. Lett. 6 (1999), 203-211 Zbl0947.35102
  6. T. Christiansen, Several complex variables and the distribution of resonances in potential scattering, Comm. Math. Phys. 259 (2005), 711-728 Zbl1088.81093
  7. T. Christiansen, Schrödinger operators with complex-valued potentials and no resonances, Duke Math. J. 133 (2006), 313-323 Zbl1107.35094
  8. T. Christiansen, Isophasal, isopolar, and isospectral Schrödinger operators and elementary complex analysis, Amer. J. Math. 130 (2008), 49-58 Zbl1140.35005
  9. T. Christiansen, P. D. Hislop, The resonance counting function for Schrödinger operators with generic potentials, Math. Res. Lett. 12 (2005), 821-826 Zbl1155.35319
  10. T. Christiansen, P. D. Hislop, Maximal order of growth for the resonance counting functions for generic potentials in even dimensions, Indiana Univ. Math. J. 59 (2010), 621-660 Zbl1202.81199
  11. Kiril Datchev, Hamid Hezari, Resonant uniqueness of radial semiclassical Schrödinger operators, Appl. Math. Res. Express. AMRX (2012), 105-113 Zbl1239.35102
  12. Tien-Cuong Dinh, Duc-Viet Vu, Asymptotic number of scattering resonances for generic Schrödinger operators, Comm. Math. Phys. 326 (2014), 185-208 Zbl1294.47016
  13. Harold Donnelly, Compactness of isospectral potentials, Trans. Amer. Math. Soc. 357 (2005), 1717-1730 (electronic) Zbl1062.58033
  14. Semyon Dyatlov, Maciej Zworski, Mathematical theory of scattering resonances Zbl06502090
  15. Peter B. Gilkey, Asymptotic formulae in spectral geometry, (2004), Chapman & Hall/CRC, Boca Raton, FL Zbl1080.58023
  16. Laurent Guillopé, Asymptotique de la phase de diffusion pour l’opérateur de Schrödinger avec potentiel, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), 601-603 Zbl0487.35073
  17. Michael Hitrik, Iosif Polterovich, Regularized traces and Taylor expansions for the heat semigroup, J. London Math. Soc. (2) 68 (2003), 402-418 Zbl1167.35335
  18. Arne Jensen, High energy asymptotics for the total scattering phase in potential scattering theory, Functional-analytic methods for partial differential equations (Tokyo, 1989) 1450 (1990), 187-195, Springer, Berlin Zbl0723.35061
  19. Arne Jensen, Tosio Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J. 46 (1979), 583-611 Zbl0448.35080
  20. Evgeny Korotyaev, Inverse resonance scattering on the real line, Inverse Problems 21 (2005), 325-341 Zbl1074.34081
  21. H. P. McKean, P. van Moerbeke, The spectrum of Hill’s equation, Invent. Math. 30 (1975), 217-274 Zbl0319.34024
  22. Richard B. Melrose, Geometric scattering theory, (1995), Cambridge University Press, Cambridge Zbl0849.58071
  23. Antonio Sá Barreto, Remarks on the distribution of resonances in odd dimensional Euclidean scattering, Asymptot. Anal. 27 (2001), 161-170 Zbl1116.35344
  24. Antônio Sá Barreto, Maciej Zworski, Existence of resonances in potential scattering, Comm. Pure Appl. Math. 49 (1996), 1271-1280 Zbl0877.35087
  25. Michael E. Taylor, Partial differential equations III. Nonlinear equations, 117 (2011), Springer, New York Zbl1206.35004
  26. E. C. Titchmarsh, The theory of functions, (1958), Oxford University Press, Oxford Zbl0084.09401
  27. Yves Colin de Verdière, Une formule de traces pour l’opérateur de Schrödinger dans R 3 , Ann. Sci. École Norm. Sup. (4) 14 (1981), 27-39 Zbl0482.35068
  28. Yves Colin de Verdière, Semiclassical trace formulas and heat expansions, Anal. PDE 5 (2012), 693-703 Zbl1264.35156
  29. Maciej Zworski, Sharp polynomial bounds on the number of scattering poles, Duke Math. J. 59 (1989), 311-323 Zbl0705.35099
  30. Maciej Zworski, Poisson formulae for resonances, Séminaire sur les Équations aux Dérivées Partielles, 1996–1997 (1997), École Polytech., Palaiseau Zbl1255.35084
  31. Maciej Zworski, A remark on isopolar potentials, SIAM J. Math. Anal. 32 (2001), 1324-1326 (electronic) Zbl0988.34067

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.