Suite spectrale du coniveau et t -structure homotopique

Frédéric Déglise

Annales de la faculté des sciences de Toulouse Mathématiques (2014)

  • Volume: 23, Issue: 3, page 591-609
  • ISSN: 0240-2963

Abstract

top
Dans cette note, nous montrons que la suite spectrale du coniveau associée à un spectre motivique sur un corps parfait coïncide avec sa suite spectrale d’hypercohomologie pour la t-structure homotopique.

How to cite

top

Déglise, Frédéric. "Suite spectrale du coniveau et $t$-structure homotopique." Annales de la faculté des sciences de Toulouse Mathématiques 23.3 (2014): 591-609. <http://eudml.org/doc/275346>.

@article{Déglise2014,
abstract = {Dans cette note, nous montrons que la suite spectrale du coniveau associée à un spectre motivique sur un corps parfait coïncide avec sa suite spectrale d’hypercohomologie pour la t-structure homotopique.},
author = {Déglise, Frédéric},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {coniveau spectral sequence; sheaf cohomology; motivic complexes; homotopy -structure; motivic homotopy theory; hypercohomology},
language = {eng},
number = {3},
pages = {591-609},
publisher = {Université Paul Sabatier, Toulouse},
title = {Suite spectrale du coniveau et $t$-structure homotopique},
url = {http://eudml.org/doc/275346},
volume = {23},
year = {2014},
}

TY - JOUR
AU - Déglise, Frédéric
TI - Suite spectrale du coniveau et $t$-structure homotopique
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 3
SP - 591
EP - 609
AB - Dans cette note, nous montrons que la suite spectrale du coniveau associée à un spectre motivique sur un corps parfait coïncide avec sa suite spectrale d’hypercohomologie pour la t-structure homotopique.
LA - eng
KW - coniveau spectral sequence; sheaf cohomology; motivic complexes; homotopy -structure; motivic homotopy theory; hypercohomology
UR - http://eudml.org/doc/275346
ER -

References

top
  1. Arapura (D.), Su-Jeong Kang (S.-J.).— “Functoriality of the coniveau filtration", Canad. Math. Bull. 50, no. 2, p. 161-17 (2007)1. Zbl1132.14008MR2317438
  2. Bloch (S.), Ogus (A.).— “Gersten’s conjecture and the homology of schemes", Ann. Sci. École Norm. Sup. (4) 7 (1974), p. 181-201 (1975). Zbl0307.14008MR412191
  3. V. Bondarko (M. V.).— “Motivically functorial coniveau spectral sequences ; direct summands of cohomology of function fields", Doc. Math., no. Extra volume : Andrei A. Suslin sixtieth birthday, p. 33-117 (2010). Zbl1210.14023MR2804250
  4. Cisinski (D.-C.), Déglise (F.).— “Local and stable homological algebra in Grothendieck abelian categories", HHA 11, no. 1, p. 219-260 (2009). Zbl1175.18007MR2529161
  5. Cisinski (D.-C.), Déglise (F.).— “Mixed Weil cohomologies", Adv. in Math. 230, no. 1, p. 55-130 (2012). Zbl1244.14014MR2900540
  6. Déglise (F.).— “Interprétation motivique de la formule d’excès d’intersection", C. R. Math. Acad. Sci. Paris 338, no. 1, p. 41-46, Présenté par J.P. Serre (2004). Zbl1048.18004MR2038082
  7. Déglise (F.) “Motifs génériques", Rend. Semin. Mat. Univ. Padova 119, p. 173-244 (2008). Zbl1207.14011MR2431508
  8. Déglise (F.) “Modules homotopiques", Doc. Math. 16, p. 411-455 (2011). Zbl1268.14019MR2823365
  9. Déglise (F.) “Around the Gysin triangle I", Regulators, Contemporary Mathematics, vol. 571, p. 77-116 (2012). Zbl1330.14028MR2953410
  10. Déglise (F.) “Coniveau filtration and motives", Regulators, Contemporary Mathematics, vol. 571, p. 51-76 (2012). Zbl1284.14028
  11. Deligne (P.).— “Théorie de Hodge. II", Inst. Hautes Études Sci. Publ. Math., no. 40, p. 5-57 (1971). Zbl0219.14007MR498551
  12. Hartshorne (R.).— Residues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin (1966). MR222093
  13. Lurie (J.).— Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ (2009). Zbl1175.18001MR2522659
  14. McCleary (J.).— A user’s guide to spectral sequences, second éd., Cambridge Studies in Advanced Mathematics, vol. 58, Cambridge University Press, Cambridge, (2001). Zbl0959.55001MR1793722
  15. Voevodsky (V.).— “Cohomological theory of presheaves with transfers", Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, p. 87-137 (2000). Zbl1019.14010MR1764200
  16. Voevodsky (V.).— “Triangulated categories of motives over a field", Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, p. 188-238 (2000). Zbl1019.14009MR1764202

NotesEmbed ?

top

You must be logged in to post comments.