Suite spectrale du coniveau et -structure homotopique
Annales de la faculté des sciences de Toulouse Mathématiques (2014)
- Volume: 23, Issue: 3, page 591-609
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topDéglise, Frédéric. "Suite spectrale du coniveau et $t$-structure homotopique." Annales de la faculté des sciences de Toulouse Mathématiques 23.3 (2014): 591-609. <http://eudml.org/doc/275346>.
@article{Déglise2014,
abstract = {Dans cette note, nous montrons que la suite spectrale du coniveau associée à un spectre motivique sur un corps parfait coïncide avec sa suite spectrale d’hypercohomologie pour la t-structure homotopique.},
author = {Déglise, Frédéric},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {coniveau spectral sequence; sheaf cohomology; motivic complexes; homotopy -structure; motivic homotopy theory; hypercohomology},
language = {eng},
number = {3},
pages = {591-609},
publisher = {Université Paul Sabatier, Toulouse},
title = {Suite spectrale du coniveau et $t$-structure homotopique},
url = {http://eudml.org/doc/275346},
volume = {23},
year = {2014},
}
TY - JOUR
AU - Déglise, Frédéric
TI - Suite spectrale du coniveau et $t$-structure homotopique
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 3
SP - 591
EP - 609
AB - Dans cette note, nous montrons que la suite spectrale du coniveau associée à un spectre motivique sur un corps parfait coïncide avec sa suite spectrale d’hypercohomologie pour la t-structure homotopique.
LA - eng
KW - coniveau spectral sequence; sheaf cohomology; motivic complexes; homotopy -structure; motivic homotopy theory; hypercohomology
UR - http://eudml.org/doc/275346
ER -
References
top- Arapura (D.), Su-Jeong Kang (S.-J.).— “Functoriality of the coniveau filtration", Canad. Math. Bull. 50, no. 2, p. 161-17 (2007)1. Zbl1132.14008MR2317438
- Bloch (S.), Ogus (A.).— “Gersten’s conjecture and the homology of schemes", Ann. Sci. École Norm. Sup. (4) 7 (1974), p. 181-201 (1975). Zbl0307.14008MR412191
- V. Bondarko (M. V.).— “Motivically functorial coniveau spectral sequences ; direct summands of cohomology of function fields", Doc. Math., no. Extra volume : Andrei A. Suslin sixtieth birthday, p. 33-117 (2010). Zbl1210.14023MR2804250
- Cisinski (D.-C.), Déglise (F.).— “Local and stable homological algebra in Grothendieck abelian categories", HHA 11, no. 1, p. 219-260 (2009). Zbl1175.18007MR2529161
- Cisinski (D.-C.), Déglise (F.).— “Mixed Weil cohomologies", Adv. in Math. 230, no. 1, p. 55-130 (2012). Zbl1244.14014MR2900540
- Déglise (F.).— “Interprétation motivique de la formule d’excès d’intersection", C. R. Math. Acad. Sci. Paris 338, no. 1, p. 41-46, Présenté par J.P. Serre (2004). Zbl1048.18004MR2038082
- Déglise (F.) “Motifs génériques", Rend. Semin. Mat. Univ. Padova 119, p. 173-244 (2008). Zbl1207.14011MR2431508
- Déglise (F.) “Modules homotopiques", Doc. Math. 16, p. 411-455 (2011). Zbl1268.14019MR2823365
- Déglise (F.) “Around the Gysin triangle I", Regulators, Contemporary Mathematics, vol. 571, p. 77-116 (2012). Zbl1330.14028MR2953410
- Déglise (F.) “Coniveau filtration and motives", Regulators, Contemporary Mathematics, vol. 571, p. 51-76 (2012). Zbl1284.14028
- Deligne (P.).— “Théorie de Hodge. II", Inst. Hautes Études Sci. Publ. Math., no. 40, p. 5-57 (1971). Zbl0219.14007MR498551
- Hartshorne (R.).— Residues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin (1966). MR222093
- Lurie (J.).— Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ (2009). Zbl1175.18001MR2522659
- McCleary (J.).— A user’s guide to spectral sequences, second éd., Cambridge Studies in Advanced Mathematics, vol. 58, Cambridge University Press, Cambridge, (2001). Zbl0959.55001MR1793722
- Voevodsky (V.).— “Cohomological theory of presheaves with transfers", Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, p. 87-137 (2000). Zbl1019.14010MR1764200
- Voevodsky (V.).— “Triangulated categories of motives over a field", Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, p. 188-238 (2000). Zbl1019.14009MR1764202
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.