A proof of Reidemeister-Singer’s theorem by Cerf’s methods

François Laudenbach

Annales de la faculté des sciences de Toulouse Mathématiques (2014)

  • Volume: 23, Issue: 1, page 197-221
  • ISSN: 0240-2963

Abstract

top
Heegaard splittings and Heegaard diagrams of a closed 3-manifold M are translated into the language of Morse functions with Morse-Smale pseudo-gradients defined on M . We make use in a very simple setting of techniques which Jean Cerf developed for solving a famous pseudo-isotopy problem. In passing, we show how to cancel the supernumerary local extrema in a generic path of functions when dim M > 2 . The main tool that we introduce is an elementary swallow tail lemma which could be useful elsewhere.

How to cite

top

Laudenbach, François. "A proof of Reidemeister-Singer’s theorem by Cerf’s methods." Annales de la faculté des sciences de Toulouse Mathématiques 23.1 (2014): 197-221. <http://eudml.org/doc/275349>.

@article{Laudenbach2014,
abstract = {Heegaard splittings and Heegaard diagrams of a closed 3-manifold $M$ are translated into the language of Morse functions with Morse-Smale pseudo-gradients defined on $M$. We make use in a very simple setting of techniques which Jean Cerf developed for solving a famous pseudo-isotopy problem. In passing, we show how to cancel the supernumerary local extrema in a generic path of functions when $\dim M&gt;2$. The main tool that we introduce is an elementary swallow tail lemma which could be useful elsewhere.},
author = {Laudenbach, François},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Heegaard splitting; Morse theory; Cerf theory; pseudo-gradient field; ordered functions},
language = {eng},
number = {1},
pages = {197-221},
publisher = {Université Paul Sabatier, Toulouse},
title = {A proof of Reidemeister-Singer’s theorem by Cerf’s methods},
url = {http://eudml.org/doc/275349},
volume = {23},
year = {2014},
}

TY - JOUR
AU - Laudenbach, François
TI - A proof of Reidemeister-Singer’s theorem by Cerf’s methods
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 1
SP - 197
EP - 221
AB - Heegaard splittings and Heegaard diagrams of a closed 3-manifold $M$ are translated into the language of Morse functions with Morse-Smale pseudo-gradients defined on $M$. We make use in a very simple setting of techniques which Jean Cerf developed for solving a famous pseudo-isotopy problem. In passing, we show how to cancel the supernumerary local extrema in a generic path of functions when $\dim M&gt;2$. The main tool that we introduce is an elementary swallow tail lemma which could be useful elsewhere.
LA - eng
KW - Heegaard splitting; Morse theory; Cerf theory; pseudo-gradient field; ordered functions
UR - http://eudml.org/doc/275349
ER -

References

top
  1. Bott (R.).— Lectures on Morse theory, old and new, Bulletin Amer. Math. Soc. 7, Number 2, p. 331-358 (Sept. 1982). Zbl0505.58001MR663786
  2. Brin (M.), Stuck (G.).— Introduction to dynamical systems, Cambridge University Press (2002). Zbl1314.37002MR1963683
  3. Cerf (J.).— La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Inst. Hautes Études Sci. Publ. Math. 39, p. 5-173 (1970). Zbl0213.25202MR292089
  4. Chenciner (A.), Laudenbach (F.).— Singularités de codimension 1 et chemins élémentaires d’élimination, C. R. Acad. Sci. Paris, Série A, t. 270, p. 1575-1578 (juin 1970). Zbl0195.25302MR278319
  5. Chillingworth (D. R. J.).— Collapsing three-dimensional convex polyhedra, Proc Cambridge Philos. Soc. 63, p. 353-357 (1967). Zbl0152.22601MR210100
  6. Craggs (R.).— A new proof of the Reidemeister-Singer theorem on stable equivalence of Heegaard splittings, Proc. Amer. Math. Soc. 57, n 1, p. 143-147 (1976). Zbl0394.57014MR410749
  7. Hirsch (M.).— Differential Topology, GTM 33, Springer (1976). Zbl0356.57001MR448362
  8. Kudryavtseva (E. A.).— Realization of smooth functions on surfaces as height functions, Sbornik: Math. 190:3, p. 349-405 (1999). Zbl0941.57026MR1700994
  9. Laudenbach (F.).— De la transversalité de Thom au h -principe de Gromov, p. 227-258 in: Leçons de mathématiques d’aujourd’hui, Ed. F. Bayart, E. Charpentier, vol. 4, Cassini, Paris (2010), ISBN 978-2-84225-114-7. MR842768
  10. Laudenbach (F.).— Transversalité, courants et théorie de Morse, éditions École polytechnique – Ellipses, Paris (2011), ISBN 978-2-7302-1585-5. 
  11. Laudenbach (F.).— A proof of Morse’s theorem about the cancellation of critical points, C. R. Acad. Sci. Paris, Ser. I, vol. 351, Issues 11-12, p. 483-488 (June 2013). Zbl1279.57023MR3090134
  12. Milnor (J.).— Lectures on the h-cobordism theorem, Princeton Univ. Press (1965). Zbl0161.20302MR190942
  13. Moraga Ferrándiz (C.).— Elimination of extremal index zeroes from generic paths of closed 1-forms, ArXiv math. 1303.5918. Zbl06384001
  14. Morse (M.).— Bowls of a non-degenerate function on a compact differentiable manifold, 81-103 in: Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press (1965). Zbl0159.24803MR182026
  15. Moser (J.).— On the volume elements on a manifold, Trans. Amer. Math. Soc. 120, p. 286-294 (1965). Zbl0141.19407MR182927
  16. Reidemeister (K.).— Zur dreidimensionalen Topologie, Abh. Math. Sem. Univ. Hamburg 9, p. 189-194 (1933). Zbl0007.08005MR3069596
  17. Siebenmann (L.).— Les bisections expliquent le théorème de Reidemeister-Singer, un retour aux sources, http://lcs98.free.fr/biblio/prepub/SiebenmannL _ 1980 _ Bisections/ SiebenmannL _ 1980 _ Bisections.pdf 
  18. Singer (J.).— Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer. Math. Soc. 35 n 1, p. 88-111 (1933). Zbl0006.18501MR1501673
  19. Smale (S.).— On gradient dynamical systems, Annals of Math. 74, p. 199-206 (1961). Zbl0136.43702MR133139
  20. Thom (R.).— Les singularités des applications différentiables, Ann. Inst. Fourier (Grenoble) 6, p. 43-87 (1955-1956). Zbl0075.32104MR87149
  21. Whitney (H.).— On singularities of mappings of Euclidean spaces. I. Mappings of the plane into the plane, Annals of Math. 62, p. 374-410 (1955). Zbl0068.37101MR73980

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.