A proof of Reidemeister-Singer’s theorem by Cerf’s methods
Annales de la faculté des sciences de Toulouse Mathématiques (2014)
- Volume: 23, Issue: 1, page 197-221
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topLaudenbach, François. "A proof of Reidemeister-Singer’s theorem by Cerf’s methods." Annales de la faculté des sciences de Toulouse Mathématiques 23.1 (2014): 197-221. <http://eudml.org/doc/275349>.
@article{Laudenbach2014,
abstract = {Heegaard splittings and Heegaard diagrams of a closed 3-manifold $M$ are translated into the language of Morse functions with Morse-Smale pseudo-gradients defined on $M$. We make use in a very simple setting of techniques which Jean Cerf developed for solving a famous pseudo-isotopy problem. In passing, we show how to cancel the supernumerary local extrema in a generic path of functions when $\dim M>2$. The main tool that we introduce is an elementary swallow tail lemma which could be useful elsewhere.},
author = {Laudenbach, François},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Heegaard splitting; Morse theory; Cerf theory; pseudo-gradient field; ordered functions},
language = {eng},
number = {1},
pages = {197-221},
publisher = {Université Paul Sabatier, Toulouse},
title = {A proof of Reidemeister-Singer’s theorem by Cerf’s methods},
url = {http://eudml.org/doc/275349},
volume = {23},
year = {2014},
}
TY - JOUR
AU - Laudenbach, François
TI - A proof of Reidemeister-Singer’s theorem by Cerf’s methods
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 1
SP - 197
EP - 221
AB - Heegaard splittings and Heegaard diagrams of a closed 3-manifold $M$ are translated into the language of Morse functions with Morse-Smale pseudo-gradients defined on $M$. We make use in a very simple setting of techniques which Jean Cerf developed for solving a famous pseudo-isotopy problem. In passing, we show how to cancel the supernumerary local extrema in a generic path of functions when $\dim M>2$. The main tool that we introduce is an elementary swallow tail lemma which could be useful elsewhere.
LA - eng
KW - Heegaard splitting; Morse theory; Cerf theory; pseudo-gradient field; ordered functions
UR - http://eudml.org/doc/275349
ER -
References
top- Bott (R.).— Lectures on Morse theory, old and new, Bulletin Amer. Math. Soc. 7, Number 2, p. 331-358 (Sept. 1982). Zbl0505.58001MR663786
- Brin (M.), Stuck (G.).— Introduction to dynamical systems, Cambridge University Press (2002). Zbl1314.37002MR1963683
- Cerf (J.).— La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Inst. Hautes Études Sci. Publ. Math. 39, p. 5-173 (1970). Zbl0213.25202MR292089
- Chenciner (A.), Laudenbach (F.).— Singularités de codimension 1 et chemins élémentaires d’élimination, C. R. Acad. Sci. Paris, Série A, t. 270, p. 1575-1578 (juin 1970). Zbl0195.25302MR278319
- Chillingworth (D. R. J.).— Collapsing three-dimensional convex polyhedra, Proc Cambridge Philos. Soc. 63, p. 353-357 (1967). Zbl0152.22601MR210100
- Craggs (R.).— A new proof of the Reidemeister-Singer theorem on stable equivalence of Heegaard splittings, Proc. Amer. Math. Soc. 57, n 1, p. 143-147 (1976). Zbl0394.57014MR410749
- Hirsch (M.).— Differential Topology, GTM 33, Springer (1976). Zbl0356.57001MR448362
- Kudryavtseva (E. A.).— Realization of smooth functions on surfaces as height functions, Sbornik: Math. 190:3, p. 349-405 (1999). Zbl0941.57026MR1700994
- Laudenbach (F.).— De la transversalité de Thom au -principe de Gromov, p. 227-258 in: Leçons de mathématiques d’aujourd’hui, Ed. F. Bayart, E. Charpentier, vol. 4, Cassini, Paris (2010), ISBN 978-2-84225-114-7. MR842768
- Laudenbach (F.).— Transversalité, courants et théorie de Morse, éditions École polytechnique – Ellipses, Paris (2011), ISBN 978-2-7302-1585-5.
- Laudenbach (F.).— A proof of Morse’s theorem about the cancellation of critical points, C. R. Acad. Sci. Paris, Ser. I, vol. 351, Issues 11-12, p. 483-488 (June 2013). Zbl1279.57023MR3090134
- Milnor (J.).— Lectures on the h-cobordism theorem, Princeton Univ. Press (1965). Zbl0161.20302MR190942
- Moraga Ferrándiz (C.).— Elimination of extremal index zeroes from generic paths of closed 1-forms, ArXiv math. 1303.5918. Zbl06384001
- Morse (M.).— Bowls of a non-degenerate function on a compact differentiable manifold, 81-103 in: Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press (1965). Zbl0159.24803MR182026
- Moser (J.).— On the volume elements on a manifold, Trans. Amer. Math. Soc. 120, p. 286-294 (1965). Zbl0141.19407MR182927
- Reidemeister (K.).— Zur dreidimensionalen Topologie, Abh. Math. Sem. Univ. Hamburg 9, p. 189-194 (1933). Zbl0007.08005MR3069596
- Siebenmann (L.).— Les bisections expliquent le théorème de Reidemeister-Singer, un retour aux sources, http://lcs98.free.fr/biblio/prepub/SiebenmannL1980Bisections/ SiebenmannL1980Bisections.pdf
- Singer (J.).— Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer. Math. Soc. 35 n 1, p. 88-111 (1933). Zbl0006.18501MR1501673
- Smale (S.).— On gradient dynamical systems, Annals of Math. 74, p. 199-206 (1961). Zbl0136.43702MR133139
- Thom (R.).— Les singularités des applications différentiables, Ann. Inst. Fourier (Grenoble) 6, p. 43-87 (1955-1956). Zbl0075.32104MR87149
- Whitney (H.).— On singularities of mappings of Euclidean spaces. I. Mappings of the plane into the plane, Annals of Math. 62, p. 374-410 (1955). Zbl0068.37101MR73980
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.