Page 1

Displaying 1 – 13 of 13

Showing per page

A Polish AR-Space with no Nontrivial Isotopy

Tadeusz Dobrowolski (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

The Polish space Y constructed in [vM1] admits no nontrivial isotopy. Yet, there exists a Polish group that acts transitively on Y.

A proof of Reidemeister-Singer’s theorem by Cerf’s methods

François Laudenbach (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Heegaard splittings and Heegaard diagrams of a closed 3-manifold M are translated into the language of Morse functions with Morse-Smale pseudo-gradients defined on M . We make use in a very simple setting of techniques which Jean Cerf developed for solving a famous pseudo-isotopy problem. In passing, we show how to cancel the supernumerary local extrema in a generic path of functions when dim M > 2 . The main tool that we introduce is an elementary swallow tail lemma which could be useful elsewhere.

On pseudo-isotopy classes of homeomorphisms of a dimensional differentiable manifold.

Alberto Cavicchioli, Friedrich Hegenbarth (1998)

Revista Matemática Complutense

We study self-homotopy equivalences and diffeomorphisms of the (n+1)-dimensional manifold X= #p(S1 x Sn) for any n ≥ 3. Then we completely determine the group of pseudo-isotopy classes of homeomorphisms of X and extend to dimension n well-known theorems due to F. Laudenbach and V. Poenaru (1972,1973), and J. M. Montesinos (1979).

Currently displaying 1 – 13 of 13

Page 1