The supports of higher bifurcation currents
- [1] CMLS, École Polytechnique, 91128 Palaiseau, France. Nouvelle adresse : LAMA, Université Paris Est Marne-la-Vallée, Cité Descartes 77454 Marne-la-Vallée cedex France.
Annales de la faculté des sciences de Toulouse Mathématiques (2013)
- Volume: 22, Issue: 3, page 445-464
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topDujardin, Romain. "The supports of higher bifurcation currents." Annales de la faculté des sciences de Toulouse Mathématiques 22.3 (2013): 445-464. <http://eudml.org/doc/275408>.
@article{Dujardin2013,
abstract = {Let $(f_\lambda )_\{\lambda \in \Lambda \}$ be a holomorphic family of rational mappings of degree $d$ on $\{\mathbb\{P\}\}^1(\{\mathbb\{C\}\})$, with $k$ marked critical points $c_1, \ldots , c_k$. To this data is associated a closed positive current $T_1\wedge \cdots \wedge T_k$ of bidegree $(k,k)$ on $\Lambda $, aiming to describe the simultaneous bifurcations of the marked critical points. In this note we show that the support of this current is accumulated by parameters at which $c_1, \ldots , c_k$ eventually fall on repelling cycles. Together with results of Buff, Epstein and Gauthier, this leads to a complete characterization of $\{\rm Supp\}(T_1\wedge \cdots \wedge T_k)$.},
affiliation = {CMLS, École Polytechnique, 91128 Palaiseau, France. Nouvelle adresse : LAMA, Université Paris Est Marne-la-Vallée, Cité Descartes 77454 Marne-la-Vallée cedex France.},
author = {Dujardin, Romain},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {bifurcation currents; rational maps},
language = {eng},
month = {6},
number = {3},
pages = {445-464},
publisher = {Université Paul Sabatier, Toulouse},
title = {The supports of higher bifurcation currents},
url = {http://eudml.org/doc/275408},
volume = {22},
year = {2013},
}
TY - JOUR
AU - Dujardin, Romain
TI - The supports of higher bifurcation currents
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2013/6//
PB - Université Paul Sabatier, Toulouse
VL - 22
IS - 3
SP - 445
EP - 464
AB - Let $(f_\lambda )_{\lambda \in \Lambda }$ be a holomorphic family of rational mappings of degree $d$ on ${\mathbb{P}}^1({\mathbb{C}})$, with $k$ marked critical points $c_1, \ldots , c_k$. To this data is associated a closed positive current $T_1\wedge \cdots \wedge T_k$ of bidegree $(k,k)$ on $\Lambda $, aiming to describe the simultaneous bifurcations of the marked critical points. In this note we show that the support of this current is accumulated by parameters at which $c_1, \ldots , c_k$ eventually fall on repelling cycles. Together with results of Buff, Epstein and Gauthier, this leads to a complete characterization of ${\rm Supp}(T_1\wedge \cdots \wedge T_k)$.
LA - eng
KW - bifurcation currents; rational maps
UR - http://eudml.org/doc/275408
ER -
References
top- Bassanelli (G.), Berteloot (F.).— Bifurcation currents in holomorphic dynamics on , J. Reine Angew. Math. 608, p. 201-235 (2007). Zbl1136.37025MR2339474
- Bassanelli (G.), Berteloot (F.).— Bifurcation currents and holomorphic motions in bifurcation loci, Math. Ann. 345, p. 1-23 (2009). Zbl1179.37067MR2520048
- Bedford (E.), Lyubich (M.), Smillie (J.).— Polynomial diffeomorphisms of . IV. The measure of maximal entropy and laminar currents, Invent. Math. 112, p. 77-125 (1993). Zbl0792.58034MR1207478
- Berteloot (F.).— Bifurcation currents in one-dimensional holomorphic dynamics. C.I.M.E. Lecture notes (2011).
- Branner (B.), Hubbard (J. H.).— The iteration of cubic polynomials. I. The global topology of parameter space, Acta Math. 160, no. 3-4, p. 143-206 (1988). Zbl0668.30008MR945011
- Buff (X.), Epstein (A.).— Bifurcation measure and postcritically finite rational maps, Complex dynamics, p. 491-512, A K Peters, Wellesley, MA (2009). Zbl1180.37056MR2508266
- Buff (X.), Gauthier (Th.).— Perturbations of flexible Lattès maps. Preprint, arxiv:1111.5451.
- Chirka (E. M.).— Complex analytic sets, Mathematics and its Applications (Soviet Series), 46. Kluwer Academic Publishers Group, Dordrecht, (1989). Zbl0683.32002MR1111477
- De Faria (E.), De Melo (W.).— Mathematical tools for one-dimensional dynamics. Cambridge Studies in Advanced Mathematics, 115, Cambridge University Press, Cambridge (2008). Zbl1154.30001MR2455301
- DeMarco (L.).— Dynamics of rational maps: a current on the bifurcation locus, Math. Res. Lett. 8, no. 1-2, p. 57-66 (2001). Zbl0991.37030MR1825260
- Diller (J.), Dujardin (R.), Guedj (V.).— Dynamics of rational mappings with small topological degree III: geometric currents and ergodic theory, Ann. Scient. Ec. Norm. Sup., 43 p. 235-278 (2010). Zbl1197.37059MR2662665
- Dinh (T. C.).— Suites d’applications méromorphes multivaluées et courants laminaires, J. Geom. Anal. 15, p. 207-227 (2005). Zbl1085.37039MR2152480
- Dinh (T. C.), Sibony (N.).— Dynamique des applications d’allure polynomiale, J. Math. Pures Appl. (9) 82, p. 367-423 (2003). Zbl1033.37023MR1992375
- Dinh (T. C.), Sibony (N.).— Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv. 81, no. 1, p. 221-258 (2006). Zbl1094.32005MR2208805
- Dujardin (R.).— Structure properties of laminar currents on , J. Geom. Anal., 15, p. 25-47 (2005). Zbl1076.37033MR2132264
- Dujardin (R.).— Sur l’intersection des courants laminaires, Pub. Mat. 48, p. 107-125 (2004). Zbl1048.32021MR2044640
- Dujardin (R.).— Bifurcation currents and equidistribution in parameter space, Preprint, to appear in Frontiers in complex dynamics (celebrating John Milnor’s 80th birthday) (2011).
- Dujardin (R.), Favre (Ch.).— Distribution of rational maps with a preperiodic critical point, Amer. J. Math. 130, p. 979-1032 (2008). Zbl1246.37071MR2427006
- Gauthier (Th.).— Strong-bifurcation loci of full Hausdorff dimension, Ann. Scient. Ec. Norm. Sup., to appear. Zbl1326.37036MR3075109
- Guedj (V.), Zeriahi (A.).— Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15, no. 4, p. 607-639 (2005). Zbl1087.32020MR2203165
- McMullen (C.T.).— Families of rational maps and iterative root-finding algorithms, Ann. of Math. 125, p. 467-493 (1987). Zbl0634.30028MR890160
- Milnor (J. W.).— On Lattès maps, Dynamics on the Riemann Sphere, European Math. Soc., Zürich, p. 9-43 (2006). Zbl1235.37015MR2348953
- Lyubich (M.).— Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems 3, p. 351-385 (1983). Zbl0537.58035MR741393
- Shishikura (M.).— The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, Ann. of Math. (2) 147, no. 2, p. 225-267 (1998). Zbl0922.58047MR1626737
- Sibony (N.).— Dynamique des applications rationnelles de , Dynamique et géométrie complexes (Lyon, 1997), Panoramas et Synthèses, 8 (1999). Zbl1020.37026MR1760844
- Silverman (J. H.).— The arithmetic of dynamical systems, Graduate Texts in Mathematics, 241. Springer, New York (2007). Zbl1130.37001MR2316407
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.