The supports of higher bifurcation currents

Romain Dujardin[1]

  • [1] CMLS, École Polytechnique, 91128 Palaiseau, France. Nouvelle adresse : LAMA, Université Paris Est Marne-la-Vallée, Cité Descartes 77454 Marne-la-Vallée cedex France.

Annales de la faculté des sciences de Toulouse Mathématiques (2013)

  • Volume: 22, Issue: 3, page 445-464
  • ISSN: 0240-2963

Abstract

top
Let ( f λ ) λ Λ be a holomorphic family of rational mappings of degree d on 1 ( ) , with k marked critical points c 1 , ... , c k . To this data is associated a closed positive current T 1 T k of bidegree ( k , k ) on Λ , aiming to describe the simultaneous bifurcations of the marked critical points. In this note we show that the support of this current is accumulated by parameters at which c 1 , ... , c k eventually fall on repelling cycles. Together with results of Buff, Epstein and Gauthier, this leads to a complete characterization of Supp ( T 1 T k ) .

How to cite

top

Dujardin, Romain. "The supports of higher bifurcation currents." Annales de la faculté des sciences de Toulouse Mathématiques 22.3 (2013): 445-464. <http://eudml.org/doc/275408>.

@article{Dujardin2013,
abstract = {Let $(f_\lambda )_\{\lambda \in \Lambda \}$ be a holomorphic family of rational mappings of degree $d$ on $\{\mathbb\{P\}\}^1(\{\mathbb\{C\}\})$, with $k$ marked critical points $c_1, \ldots , c_k$. To this data is associated a closed positive current $T_1\wedge \cdots \wedge T_k$ of bidegree $(k,k)$ on $\Lambda $, aiming to describe the simultaneous bifurcations of the marked critical points. In this note we show that the support of this current is accumulated by parameters at which $c_1, \ldots , c_k$ eventually fall on repelling cycles. Together with results of Buff, Epstein and Gauthier, this leads to a complete characterization of $\{\rm Supp\}(T_1\wedge \cdots \wedge T_k)$.},
affiliation = {CMLS, École Polytechnique, 91128 Palaiseau, France. Nouvelle adresse : LAMA, Université Paris Est Marne-la-Vallée, Cité Descartes 77454 Marne-la-Vallée cedex France.},
author = {Dujardin, Romain},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {bifurcation currents; rational maps},
language = {eng},
month = {6},
number = {3},
pages = {445-464},
publisher = {Université Paul Sabatier, Toulouse},
title = {The supports of higher bifurcation currents},
url = {http://eudml.org/doc/275408},
volume = {22},
year = {2013},
}

TY - JOUR
AU - Dujardin, Romain
TI - The supports of higher bifurcation currents
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2013/6//
PB - Université Paul Sabatier, Toulouse
VL - 22
IS - 3
SP - 445
EP - 464
AB - Let $(f_\lambda )_{\lambda \in \Lambda }$ be a holomorphic family of rational mappings of degree $d$ on ${\mathbb{P}}^1({\mathbb{C}})$, with $k$ marked critical points $c_1, \ldots , c_k$. To this data is associated a closed positive current $T_1\wedge \cdots \wedge T_k$ of bidegree $(k,k)$ on $\Lambda $, aiming to describe the simultaneous bifurcations of the marked critical points. In this note we show that the support of this current is accumulated by parameters at which $c_1, \ldots , c_k$ eventually fall on repelling cycles. Together with results of Buff, Epstein and Gauthier, this leads to a complete characterization of ${\rm Supp}(T_1\wedge \cdots \wedge T_k)$.
LA - eng
KW - bifurcation currents; rational maps
UR - http://eudml.org/doc/275408
ER -

References

top
  1. Bassanelli (G.), Berteloot (F.).— Bifurcation currents in holomorphic dynamics on P k , J. Reine Angew. Math. 608, p. 201-235 (2007). Zbl1136.37025MR2339474
  2. Bassanelli (G.), Berteloot (F.).— Bifurcation currents and holomorphic motions in bifurcation loci, Math. Ann. 345, p. 1-23 (2009). Zbl1179.37067MR2520048
  3. Bedford (E.), Lyubich (M.), Smillie (J.).— Polynomial diffeomorphisms of 2 . IV. The measure of maximal entropy and laminar currents, Invent. Math. 112, p. 77-125 (1993). Zbl0792.58034MR1207478
  4. Berteloot (F.).— Bifurcation currents in one-dimensional holomorphic dynamics. C.I.M.E. Lecture notes (2011). 
  5. Branner (B.), Hubbard (J. H.).— The iteration of cubic polynomials. I. The global topology of parameter space, Acta Math. 160, no. 3-4, p. 143-206 (1988). Zbl0668.30008MR945011
  6. Buff (X.), Epstein (A.).— Bifurcation measure and postcritically finite rational maps, Complex dynamics, p. 491-512, A K Peters, Wellesley, MA (2009). Zbl1180.37056MR2508266
  7. Buff (X.), Gauthier (Th.).— Perturbations of flexible Lattès maps. Preprint, arxiv:1111.5451. 
  8. Chirka (E. M.).— Complex analytic sets, Mathematics and its Applications (Soviet Series), 46. Kluwer Academic Publishers Group, Dordrecht, (1989). Zbl0683.32002MR1111477
  9. De Faria (E.), De Melo (W.).— Mathematical tools for one-dimensional dynamics. Cambridge Studies in Advanced Mathematics, 115, Cambridge University Press, Cambridge (2008). Zbl1154.30001MR2455301
  10. DeMarco (L.).— Dynamics of rational maps: a current on the bifurcation locus, Math. Res. Lett. 8, no. 1-2, p. 57-66 (2001). Zbl0991.37030MR1825260
  11. Diller (J.), Dujardin (R.), Guedj (V.).— Dynamics of rational mappings with small topological degree III: geometric currents and ergodic theory, Ann. Scient. Ec. Norm. Sup., 43 p. 235-278 (2010). Zbl1197.37059MR2662665
  12. Dinh (T. C.).— Suites d’applications méromorphes multivaluées et courants laminaires, J. Geom. Anal. 15, p. 207-227 (2005). Zbl1085.37039MR2152480
  13. Dinh (T. C.), Sibony (N.).— Dynamique des applications d’allure polynomiale, J. Math. Pures Appl. (9) 82, p. 367-423 (2003). Zbl1033.37023MR1992375
  14. Dinh (T. C.), Sibony (N.).— Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv. 81, no. 1, p. 221-258 (2006). Zbl1094.32005MR2208805
  15. Dujardin (R.).— Structure properties of laminar currents on 2 , J. Geom. Anal., 15, p. 25-47 (2005). Zbl1076.37033MR2132264
  16. Dujardin (R.).— Sur l’intersection des courants laminaires, Pub. Mat. 48, p. 107-125 (2004). Zbl1048.32021MR2044640
  17. Dujardin (R.).— Bifurcation currents and equidistribution in parameter space, Preprint, to appear in Frontiers in complex dynamics (celebrating John Milnor’s 80th birthday) (2011). 
  18. Dujardin (R.), Favre (Ch.).— Distribution of rational maps with a preperiodic critical point, Amer. J. Math. 130, p. 979-1032 (2008). Zbl1246.37071MR2427006
  19. Gauthier (Th.).— Strong-bifurcation loci of full Hausdorff dimension, Ann. Scient. Ec. Norm. Sup., to appear. Zbl1326.37036MR3075109
  20. Guedj (V.), Zeriahi (A.).— Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15, no. 4, p. 607-639 (2005). Zbl1087.32020MR2203165
  21. McMullen (C.T.).— Families of rational maps and iterative root-finding algorithms, Ann. of Math. 125, p. 467-493 (1987). Zbl0634.30028MR890160
  22. Milnor (J. W.).— On Lattès maps, Dynamics on the Riemann Sphere, European Math. Soc., Zürich, p. 9-43 (2006). Zbl1235.37015MR2348953
  23. Lyubich (M.).— Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems 3, p. 351-385 (1983). Zbl0537.58035MR741393
  24. Shishikura (M.).— The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, Ann. of Math. (2) 147, no. 2, p. 225-267 (1998). Zbl0922.58047MR1626737
  25. Sibony (N.).— Dynamique des applications rationnelles de k , Dynamique et géométrie complexes (Lyon, 1997), Panoramas et Synthèses, 8 (1999). Zbl1020.37026MR1760844
  26. Silverman (J. H.).— The arithmetic of dynamical systems, Graduate Texts in Mathematics, 241. Springer, New York (2007). Zbl1130.37001MR2316407

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.