Dynamics of meromorphic maps with small topological degree III: geometric currents and ergodic theory

Jeffrey Diller; Romain Dujardin; Vincent Guedj

Annales scientifiques de l'École Normale Supérieure (2010)

  • Volume: 43, Issue: 2, page 235-278
  • ISSN: 0012-9593

Abstract

top
We continue our study of the dynamics of mappings with small topological degree on projective complex surfaces. Previously, under mild hypotheses, we have constructed an ergodic “equilibrium” measure for each such mapping. Here we study the dynamical properties of this measure in detail: we give optimal bounds for its Lyapunov exponents, prove that it has maximal entropy, and show that it has product structure in the natural extension. Under a natural further assumption, we show that saddle points are equidistributed towards this measure. This generalizes results that were known in the invertible case and adds to the small number of situations in which a natural invariant measure for a non-invertible dynamical system is well-understood.

How to cite

top

Diller, Jeffrey, Dujardin, Romain, and Guedj, Vincent. "Dynamics of meromorphic maps with small topological degree III: geometric currents and ergodic theory." Annales scientifiques de l'École Normale Supérieure 43.2 (2010): 235-278. <http://eudml.org/doc/272177>.

@article{Diller2010,
abstract = {We continue our study of the dynamics of mappings with small topological degree on projective complex surfaces. Previously, under mild hypotheses, we have constructed an ergodic “equilibrium” measure for each such mapping. Here we study the dynamical properties of this measure in detail: we give optimal bounds for its Lyapunov exponents, prove that it has maximal entropy, and show that it has product structure in the natural extension. Under a natural further assumption, we show that saddle points are equidistributed towards this measure. This generalizes results that were known in the invertible case and adds to the small number of situations in which a natural invariant measure for a non-invertible dynamical system is well-understood.},
author = {Diller, Jeffrey, Dujardin, Romain, Guedj, Vincent},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {dynamics of meromorphic mappings; laminar and woven currents; entropy; natural extension},
language = {eng},
number = {2},
pages = {235-278},
publisher = {Société mathématique de France},
title = {Dynamics of meromorphic maps with small topological degree III: geometric currents and ergodic theory},
url = {http://eudml.org/doc/272177},
volume = {43},
year = {2010},
}

TY - JOUR
AU - Diller, Jeffrey
AU - Dujardin, Romain
AU - Guedj, Vincent
TI - Dynamics of meromorphic maps with small topological degree III: geometric currents and ergodic theory
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 2
SP - 235
EP - 278
AB - We continue our study of the dynamics of mappings with small topological degree on projective complex surfaces. Previously, under mild hypotheses, we have constructed an ergodic “equilibrium” measure for each such mapping. Here we study the dynamical properties of this measure in detail: we give optimal bounds for its Lyapunov exponents, prove that it has maximal entropy, and show that it has product structure in the natural extension. Under a natural further assumption, we show that saddle points are equidistributed towards this measure. This generalizes results that were known in the invertible case and adds to the small number of situations in which a natural invariant measure for a non-invertible dynamical system is well-understood.
LA - eng
KW - dynamics of meromorphic mappings; laminar and woven currents; entropy; natural extension
UR - http://eudml.org/doc/272177
ER -

References

top
  1. [1] E. Bedford & J. Diller, Energy and invariant measures for birational surface maps, Duke Math. J.128 (2005), 331–368. Zbl1076.37031MR2140266
  2. [2] E. Bedford, M. Lyubich & J. Smillie, Distribution of periodic points of polynomial diffeomorphisms of 𝐂 2 , Invent. Math.114 (1993), 277–288. Zbl0799.58039MR1240639
  3. [3] E. Bedford, M. Lyubich & J. Smillie, Polynomial diffeomorphisms of 𝐂 2 . IV. The measure of maximal entropy and laminar currents, Invent. Math. 112 (1993), 77–125. Zbl0792.58034MR1207478
  4. [4] J.-Y. Briend, Propriété de Bernoulli pour les extensions naturelles des endomorphismes de P k , Ergodic Theory Dynam. Systems21 (2001), 1001–1007. Zbl1055.37054MR1849598
  5. [5] J.-Y. Briend & J. Duval, Deux caractérisations de la mesure d’équilibre d’un endomorphisme de P k ( 𝐂 ) , Publ. Math. Inst. Hautes Études Sci.93 (2001), 145–159. Zbl1010.37004MR1863737
  6. [6] S. Cantat, Dynamique des automorphismes des surfaces K 3 , Acta Math.187 (2001), 1–57. Zbl1045.37007MR1864630
  7. [7] J. Diller, R. Dujardin & V. Guedj, Dynamics of meromorphic maps with small topological degree I: from cohomology to currents, to appear in Indiana Univ. Math. J. Zbl1234.37039MR2648077
  8. [8] J. Diller, R. Dujardin & V. Guedj, Dynamics of meromorphic maps with small topological degree II: energy and invariant measure, to appear in Comment. Math. Helvet. Zbl1297.37022MR2775130
  9. [9] J. Diller & C. Favre, Dynamics of bimeromorphic maps of surfaces, Amer. J. Math.123 (2001), 1135–1169. Zbl1112.37308MR1867314
  10. [10] T.-C. Dinh, Suites d’applications méromorphes multivaluées et courants laminaires, J. Geom. Anal.15 (2005), 207–227. Zbl1085.37039MR2152480
  11. [11] T.-C. Dinh & N. Sibony, Dynamique des applications d’allure polynomiale, J. Math. Pures Appl.82 (2003), 367–423. Zbl1033.37023MR1992375
  12. [12] R. Dujardin, Hénon-like mappings in 2 , Amer. J. Math.126 (2004), 439–472. Zbl1064.37035MR2045508
  13. [13] R. Dujardin, Sur l’intersection des courants laminaires, Publ. Mat.48 (2004), 107–125. Zbl1048.32021MR2044640
  14. [14] R. Dujardin, Structure properties of laminar currents on 2 , J. Geom. Anal.15 (2005), 25–47. Zbl1076.37033MR2132264
  15. [15] R. Dujardin, Laminar currents and birational dynamics, Duke Math. J.131 (2006), 219–247. Zbl1099.37037MR2219241
  16. [16] J. Duval, Singularités des courants d’Ahlfors, Ann. Sci. École Norm. Sup.39 (2006), 527–533. Zbl1243.32012MR2265678
  17. [17] C. Favre & M. Jonsson, Dynamical compactifications of 𝐂 2 , à paraître aux Ann. Math. Zbl1244.32012
  18. [18] J. E. Fornaess & N. Sibony, Complex dynamics in higher dimension. II, in Modern methods in complex analysis (Princeton, NJ, 1992), Ann. of Math. Stud. 137, Princeton Univ. Press, 1995, 135–182. Zbl0847.58059MR1369137
  19. [19] A. Freire, A. Lopes & R. Mañé, An invariant measure for rational maps, Bol. Soc. Brasil. Mat.14 (1983), 45–62. Zbl0568.58027MR736568
  20. [20] W. Fulton, Intersection theory, second éd., Ergebn. Math. Grenzg. 2, Springer, 1998. Zbl0885.14002MR1644323
  21. [21] É. Ghys, Laminations par surfaces de Riemann, in Dynamique et géométrie complexes (Lyon, 1997), Panor. Synthèses 8, Soc. Math. France, 1999, 49–95. Zbl1018.37028MR1760843
  22. [22] M. Gromov, On the entropy of holomorphic maps, Enseign. Math.49 (2003), 217–235. Zbl1080.37051MR2026895
  23. [23] V. Guedj, Entropie topologique des applications méromorphes, Ergodic Theory Dynam. Systems25 (2005), 1847–1855. Zbl1087.37015MR2183297
  24. [24] V. Guedj, Ergodic properties of rational mappings with large topological degree, Ann. of Math.161 (2005), 1589–1607. Zbl1088.37020MR2179389
  25. [25] F. Ledrappier, Some properties of absolutely continuous invariant measures on an interval, Ergodic Theory Dynam. Systems1 (1981), 77–93. Zbl0487.28015MR627788
  26. [26] F. Ledrappier & J.-M. Strelcyn, A proof of the estimation from below in Pesin’s entropy formula, Ergodic Theory Dynam. Systems2 (1982), 203–219. Zbl0533.58022MR693976
  27. [27] P. Lelong, Propriétés métriques des variétés analytiques complexes définies par une équation, Ann. Sci. École Norm. Sup.67 (1950), 393–419. Zbl0039.08804MR47789
  28. [28] M. J. Ljubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems3 (1983), 351–385. Zbl0537.58035MR741393
  29. [29] E. Mihailescu & M. Urbański, Holomorphic maps for which the unstable manifolds depend on prehistories, Discrete Contin. Dyn. Syst.9 (2003), 443–450. Zbl1032.37017MR1952385
  30. [30] C. C. Moore & C. Schochet, Global analysis on foliated spaces, Mathematical Sciences Research Institute Publications 9, Springer, 1988. Zbl0648.58034MR918974
  31. [31] D. Ornstein & B. Weiss, On the Bernoulli nature of systems with some hyperbolic structure, Ergodic Theory Dynam. Systems18 (1998), 441–456. Zbl0915.58076MR1619567
  32. [32] F. Przytycki, Anosov endomorphisms, Studia Math.58 (1976), 249–285. Zbl0357.58010MR445555
  33. [33] F. Przytycki & M. Urbański, Conformal fractals: Ergodic theory methods, London Math. Soc. Lecture Note Series 371, 2010. Zbl1202.37001MR2656475
  34. [34] M. Qian & S. Zhu, SRB measures and Pesin’s entropy formula for endomorphisms, Trans. Amer. Math. Soc.354 (2002), 1453–1471. Zbl1113.37010MR1873014
  35. [35] V. A. Rohlin, Lectures on the entropy theory of transformations with invariant measure, Uspehi Mat. Nauk 22 (1967), 3–56 ; English translation : Russian Math. Surveys 22 (1967), 1–52. Zbl0174.45501MR217258
  36. [36] H. de Thélin, Sur la construction de mesures selles, Ann. Inst. Fourier (Grenoble) 56 (2006), 337–372. Zbl1100.37029MR2226019
  37. [37] H. de Thélin, Sur les exposants de Lyapounov des applications méromorphes, Invent. Math.172 (2008), 89–116. Zbl1139.37037MR2385668
  38. [38] H. de Thélin & G. Vigny, Entropy of meromorphic maps and dynamics of birational maps, to appear in Mémoires de la SMF. Zbl1214.37004
  39. [39] Y. Yomdin, Volume growth and entropy, Israel J. Math.57 (1987), 285–300. Zbl0641.54036MR889979

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.