Some decay properties for the damped wave equation on the torus
Nalini Anantharaman[1]; Matthieu Léautaud[1]
- [1] Université Paris-Sud 11, Mathématiques, Bâtiment 425, 91405 Orsay Cedex, France
Journées Équations aux dérivées partielles (2012)
- Volume: 7, Issue: 1, page 1-21
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topReferences
top- N. Anantharaman, M. Léautaud, Decay rates for the damped wave equation on the torus, preprint (2012) Zbl1295.35075
- N. Anantharaman, F. Macià, Semiclassical measures for the Schrödinger equation on the torus, preprint (2011) Zbl1298.42028
- N. Anantharaman, G. Rivière, Dispersion and controllability for the Schrödinger equation on negatively curved manifolds, to appear in Analysis and PDE (2010) Zbl1267.35176MR2970709
- M. Asch, G. Lebeau, The spectrum of the damped wave operator for a bounded domain in , Experiment. Math. 12 (2003), 227-241 Zbl1061.35064MR2016708
- C. Bardos, G. Lebeau, J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim. 30 (1992), 1024-1065 Zbl0786.93009MR1178650
- C. J. K. Batty, T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ. 8 (2008), 765-780 Zbl1185.47043MR2460938
- A. Borichev, Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann. 347 (2010), 455-478 Zbl1185.47044MR2606945
- N. Burq, Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel, Acta Math. 180 (1998), 1-29 Zbl0918.35081MR1618254
- N. Burq, M. Hitrik, Energy decay for damped wave equations on partially rectangular domains, Math. Res. Lett. 14 (2007), 35-47 Zbl1122.35015MR2289618
- N. Burq, M. Zworski, Geometric control in the presence of a black box, J. Amer. Math. Soc. 17 (2004), 443-471 Zbl1050.35058MR2051618
- N. Burq, M. Zworski, Control for Schrödinger operators on tori, preprint. (2011) Zbl1281.35011MR2955763
- H. Christianson, Corrigendum to “Semiclassical non-concentration near hyperbolic orbits” [J. Funct. Anal. 246 (2) (2007) 145–195], J. Funct. Anal. 258 (2010), 1060-1065 Zbl1181.58019MR2321040
- C. Fermanian-Kammerer, Mesures semi-classiques 2-microlocales, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), 515-518 Zbl0964.35009MR1794090
- C. Fermanian-Kammerer, Analyse à deux échelles d’une suite bornée de sur une sous-variété du cotangent, C. R. Math. Acad. Sci. Paris 340 (2005), 269-274 Zbl1067.35083MR2121889
- P. Gérard, Microlocal defect measures, Comm. Partial Differential Equations 16 (1991), 1761-1794 Zbl0770.35001MR1135919
- P. Gérard, E. Leichtnam, Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J. 71 (1993), 559-607 Zbl0788.35103MR1233448
- A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d’une plaque rectangulaire, J. Math. Pures Appl. (9) 68 (1989), 457-465 (1990) Zbl0685.93039MR1046761
- S. Jaffard, Contrôle interne exact des vibrations d’une plaque rectangulaire, Portugal. Math. 47 (1990), 423-429 Zbl0718.49026MR1090480
- V. Komornik, On the exact internal controllability of a Petrowsky system, J. Math. Pures Appl. (9) 71 (1992), 331-342 Zbl0889.34055MR1176015
- G. Lebeau, Contrôle de l’équation de Schrödinger, J. Math. Pures Appl. (9) 71 (1992), 267-291 Zbl0838.35013
- G. Lebeau, Équation des ondes amorties, Algebraic and geometric methods in mathematical physics (Kaciveli, 1993) 19 (1996), 73-109, Kluwer Acad. Publ., Dordrecht Zbl0863.58068MR1385677
- G. Lebeau, L. Robbiano, Stabilisation de l’équation des ondes par le bord, Duke Math. J. 86 (1997), 465-491 Zbl0884.58093MR1432305
- Z. Liu, B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys. 56 (2005), 630-644 Zbl1100.47036MR2185299
- F. Macià, High-frequency propagation for the Schrödinger equation on the torus, J. Funct. Anal. 258 (2010), 933-955 Zbl1180.35438MR2558183
- L. Miller, Short waves through thin interfaces and 2-microlocal measures, Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1997) (1997), École Polytech., Palaiseau Zbl1005.35077MR1482278
- L. Miller, Controllability cost of conservative systems: resolvent condition and transmutation, J. Funct. Anal. 218 (2005), 425-444 Zbl1122.93011MR2108119
- K.-D. Phung, Polynomial decay rate for the dissipative wave equation, J. Differential Equations 240 (2007), 92-124 Zbl1130.35017MR2349166
- K. Ramdani, T. Takahashi, G. Tenenbaum, M. Tucsnak, A spectral approach for the exact observability of infinite-dimensional systems with skew-adjoint generator, J. Funct. Anal. 226 (2005), 193-229 Zbl1140.93395MR2158180
- J. Rauch, M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J. 24 (1974), 79-86 Zbl0281.35012MR361461
- E. Schenck, Exponential stabilization without geometric control, Math. Res. Lett. 18 (2011), 379-388 Zbl1244.93144MR2784679