Short waves through thin interfaces and 2-microlocal measures

Luc Miller

Journées équations aux dérivées partielles (1997)

  • page 1-12
  • ISSN: 0752-0360

How to cite

top

Miller, Luc. "Short waves through thin interfaces and 2-microlocal measures." Journées équations aux dérivées partielles (1997): 1-12. <http://eudml.org/doc/93336>.

@article{Miller1997,
author = {Miller, Luc},
journal = {Journées équations aux dérivées partielles},
keywords = {Schrödinger equation; semiclassical measures; microlocal Snell-Descartes law; scattering},
language = {eng},
pages = {1-12},
publisher = {Ecole polytechnique},
title = {Short waves through thin interfaces and 2-microlocal measures},
url = {http://eudml.org/doc/93336},
year = {1997},
}

TY - JOUR
AU - Miller, Luc
TI - Short waves through thin interfaces and 2-microlocal measures
JO - Journées équations aux dérivées partielles
PY - 1997
PB - Ecole polytechnique
SP - 1
EP - 12
LA - eng
KW - Schrödinger equation; semiclassical measures; microlocal Snell-Descartes law; scattering
UR - http://eudml.org/doc/93336
ER -

References

top
  1. [1] J.-M. Bony and N. Lerner. Quantification asymptotique et microlocalisation d'ordre supérieur. Ann Scient. Ec Norm Sup., 22:377-433, 1989. Zbl0753.35005MR90k:35276
  2. [2] N. Burq. Mesures semi-classiques et mesures de défaut. Séminaire Bourbaki n° 826, 1997. To appear in Astérisque. Zbl0954.35102MR99f:35011
  3. [3] C. Fermanian-Kammerer. Equation de la Chaleur et Mesures semi-classiques. PhD thesis, Université de Paris-Sud, U.F.R. Scientifique d'Orsay, 1995. 
  4. [4] G.A. Francfort and F. Murat. Oscillations and energy densities in the wave equation. Comm. in P.D.E., 17:1785-1865, 1992. Zbl0803.35010MR94b:35035
  5. [5] P. Gérard. Mesures semi-classiques et ondes de Bloch. In Sém. E.D.P. 1990-1991, exp. XVI. Centre de Mathématiques de l'Ecole Polytechnique, 1991. Zbl0739.35096MR92k:35068
  6. [6] P. Gérard. Microlocal defect measures. Comm. Partial Diff. Eq., 16:1761-1794, 1991. Zbl0770.35001MR92k:35027
  7. [7] P. Gérard. Oscillations and concentration effects in semilinear wave equations. J. of Funct. Analysis, 141(1):60-98, 1996. Zbl0868.35075MR97k:35171
  8. [8] P. Gérard and E. Leichtnam. Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math. J., 71:559-607, 1993. Zbl0788.35103MR94i:35146
  9. [9] P. Gérard, A. Markowich, N.J. Mauser, and F. Poupaud. Homogenization limits and Wigner transforms. Comm. Pure Appl. Math., L:0321-0377, 1997. Zbl0881.35099
  10. [10] F. Gesztesy, R. Nowell, and W. Pötz. One-dimensional scattering theory for quantum systems with nontrivial spatial asymptotics. Technical report, 1995. Zbl0894.34077
  11. [11] G. A. Hagedorn and W. R. E. Weiss. Reflection and transmission of high frequency pulses at an interface. Transport Theory and Stat. Phys., 14(5):539-565, 1985. Zbl0614.35052MR87d:35077
  12. [12] L. Hörmander. The Analysis of Linear Partial Differential Operators. Springer, t. I, 1983, t. III, 1985. Zbl0601.35001
  13. [13] P.-L. Lions and T. Paul. Sur les mesures de Wigner. Rev. Mat. Iberoamericana, 9:553-618, 1993. Zbl0801.35117MR95a:58124
  14. [14] R.B. Melrose and J. Sjöstrand. Singularities of boundary value problems. I. Comm. Pure Appl. Math., 31:593-617, 1978. Zbl0368.35020MR58 #11859
  15. [15] L. Miller. Réfraction d'ondes semi-classiques par des interfaces franches. To appear in C. R. Acad. Sci. Paris. Zbl0884.35028
  16. [16] L. Miller. Propagation d'ondes semi-classiques à travers une interface et mesures 2-microlocales. Doctorat de l'École Polytechnique, Palaiseau, 1996. 
  17. [17] F. Nier. A semi-classical picture of quantum scattering. Ann scient. Ec. Norm. Sup., 4e Série, 29(2):149-183, 1996. Zbl0858.35106MR97a:81044
  18. [18] S. N. M. Ruijsenaars and P. J. M. Bongaarts. Scattering theory for one-dimensional step-potentials. Ann. Inst. H. Poincaré, 26:1-17, 1977. Zbl0353.47004MR56 #2075
  19. [19] L.V. Ryzhik, J.B. Keller, and G.C. Papanicolaou. Transport equations for waves in a half space. Technical report, Stanford U., 1996. Zbl0954.74533
  20. [20] A.I. Shnirelman. On the asymptotic properties of eigenfunctions in the regions of chaotic motion. In V. F. Lazutkin, editor, The KAM Theory and Asymptotics of Spectrum of Elliptic Operators, addendum, pages 312-337. Springer, 1991. 
  21. [21] L. Tartar. H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh, 115(A):193-230, 1990. Zbl0774.35008MR91h:35042
  22. [22] M. Taylor. Grazing rays and reflection of singularities of solutions to wave equations Part II (Systems). Comm. Pure Appl. Math., 29:463-481, 1976. Zbl0335.35059MR55 #869

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.