Short waves through thin interfaces and 2-microlocal measures
Journées équations aux dérivées partielles (1997)
- page 1-12
- ISSN: 0752-0360
Access Full Article
topHow to cite
topMiller, Luc. "Short waves through thin interfaces and 2-microlocal measures." Journées équations aux dérivées partielles (1997): 1-12. <http://eudml.org/doc/93336>.
@article{Miller1997,
author = {Miller, Luc},
journal = {Journées équations aux dérivées partielles},
keywords = {Schrödinger equation; semiclassical measures; microlocal Snell-Descartes law; scattering},
language = {eng},
pages = {1-12},
publisher = {Ecole polytechnique},
title = {Short waves through thin interfaces and 2-microlocal measures},
url = {http://eudml.org/doc/93336},
year = {1997},
}
TY - JOUR
AU - Miller, Luc
TI - Short waves through thin interfaces and 2-microlocal measures
JO - Journées équations aux dérivées partielles
PY - 1997
PB - Ecole polytechnique
SP - 1
EP - 12
LA - eng
KW - Schrödinger equation; semiclassical measures; microlocal Snell-Descartes law; scattering
UR - http://eudml.org/doc/93336
ER -
References
top- [1] J.-M. Bony and N. Lerner. Quantification asymptotique et microlocalisation d'ordre supérieur. Ann Scient. Ec Norm Sup., 22:377-433, 1989. Zbl0753.35005MR90k:35276
- [2] N. Burq. Mesures semi-classiques et mesures de défaut. Séminaire Bourbaki n° 826, 1997. To appear in Astérisque. Zbl0954.35102MR99f:35011
- [3] C. Fermanian-Kammerer. Equation de la Chaleur et Mesures semi-classiques. PhD thesis, Université de Paris-Sud, U.F.R. Scientifique d'Orsay, 1995.
- [4] G.A. Francfort and F. Murat. Oscillations and energy densities in the wave equation. Comm. in P.D.E., 17:1785-1865, 1992. Zbl0803.35010MR94b:35035
- [5] P. Gérard. Mesures semi-classiques et ondes de Bloch. In Sém. E.D.P. 1990-1991, exp. XVI. Centre de Mathématiques de l'Ecole Polytechnique, 1991. Zbl0739.35096MR92k:35068
- [6] P. Gérard. Microlocal defect measures. Comm. Partial Diff. Eq., 16:1761-1794, 1991. Zbl0770.35001MR92k:35027
- [7] P. Gérard. Oscillations and concentration effects in semilinear wave equations. J. of Funct. Analysis, 141(1):60-98, 1996. Zbl0868.35075MR97k:35171
- [8] P. Gérard and E. Leichtnam. Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math. J., 71:559-607, 1993. Zbl0788.35103MR94i:35146
- [9] P. Gérard, A. Markowich, N.J. Mauser, and F. Poupaud. Homogenization limits and Wigner transforms. Comm. Pure Appl. Math., L:0321-0377, 1997. Zbl0881.35099
- [10] F. Gesztesy, R. Nowell, and W. Pötz. One-dimensional scattering theory for quantum systems with nontrivial spatial asymptotics. Technical report, 1995. Zbl0894.34077
- [11] G. A. Hagedorn and W. R. E. Weiss. Reflection and transmission of high frequency pulses at an interface. Transport Theory and Stat. Phys., 14(5):539-565, 1985. Zbl0614.35052MR87d:35077
- [12] L. Hörmander. The Analysis of Linear Partial Differential Operators. Springer, t. I, 1983, t. III, 1985. Zbl0601.35001
- [13] P.-L. Lions and T. Paul. Sur les mesures de Wigner. Rev. Mat. Iberoamericana, 9:553-618, 1993. Zbl0801.35117MR95a:58124
- [14] R.B. Melrose and J. Sjöstrand. Singularities of boundary value problems. I. Comm. Pure Appl. Math., 31:593-617, 1978. Zbl0368.35020MR58 #11859
- [15] L. Miller. Réfraction d'ondes semi-classiques par des interfaces franches. To appear in C. R. Acad. Sci. Paris. Zbl0884.35028
- [16] L. Miller. Propagation d'ondes semi-classiques à travers une interface et mesures 2-microlocales. Doctorat de l'École Polytechnique, Palaiseau, 1996.
- [17] F. Nier. A semi-classical picture of quantum scattering. Ann scient. Ec. Norm. Sup., 4e Série, 29(2):149-183, 1996. Zbl0858.35106MR97a:81044
- [18] S. N. M. Ruijsenaars and P. J. M. Bongaarts. Scattering theory for one-dimensional step-potentials. Ann. Inst. H. Poincaré, 26:1-17, 1977. Zbl0353.47004MR56 #2075
- [19] L.V. Ryzhik, J.B. Keller, and G.C. Papanicolaou. Transport equations for waves in a half space. Technical report, Stanford U., 1996. Zbl0954.74533
- [20] A.I. Shnirelman. On the asymptotic properties of eigenfunctions in the regions of chaotic motion. In V. F. Lazutkin, editor, The KAM Theory and Asymptotics of Spectrum of Elliptic Operators, addendum, pages 312-337. Springer, 1991.
- [21] L. Tartar. H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh, 115(A):193-230, 1990. Zbl0774.35008MR91h:35042
- [22] M. Taylor. Grazing rays and reflection of singularities of solutions to wave equations Part II (Systems). Comm. Pure Appl. Math., 29:463-481, 1976. Zbl0335.35059MR55 #869
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.