Vector bundles on non-Kaehler elliptic principal bundles

Vasile Brînzănescu[1]; Andrei D. Halanay[2]; Günther Trautmann[3]

  • [1] “Simion Stoilow” Institute of Mathematics of the Romanian Academy P.O.Box 1-764, 014700 Bucharest (Romania)
  • [2] University of Bucharest Faculty of Mathematics and Computer Science Str. Academiei 14 010014 Bucharest (Romania)
  • [3] Universität Kaiserslautern Fachbereich Mathematik Erwin-Schrödinger-Straße D-67663 Kaiserslautern (Allemagne)

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 3, page 1033-1054
  • ISSN: 0373-0956

Abstract

top
We study relatively semi-stable vector bundles and their moduli on non-Kähler principal elliptic bundles over compact complex manifolds of arbitrary dimension. The main technical tools used are the twisted Fourier-Mukai transform and a spectral cover construction. For the important example of such principal bundles, the numerical invariants of a 3-dimensional non-Kähler elliptic principal bundle over a primary Kodaira surface are computed.

How to cite

top

Brînzănescu, Vasile, Halanay, Andrei D., and Trautmann, Günther. "Vector bundles on non-Kaehler elliptic principal bundles." Annales de l’institut Fourier 63.3 (2013): 1033-1054. <http://eudml.org/doc/275468>.

@article{Brînzănescu2013,
abstract = {We study relatively semi-stable vector bundles and their moduli on non-Kähler principal elliptic bundles over compact complex manifolds of arbitrary dimension. The main technical tools used are the twisted Fourier-Mukai transform and a spectral cover construction. For the important example of such principal bundles, the numerical invariants of a 3-dimensional non-Kähler elliptic principal bundle over a primary Kodaira surface are computed.},
affiliation = {“Simion Stoilow” Institute of Mathematics of the Romanian Academy P.O.Box 1-764, 014700 Bucharest (Romania); University of Bucharest Faculty of Mathematics and Computer Science Str. Academiei 14 010014 Bucharest (Romania); Universität Kaiserslautern Fachbereich Mathematik Erwin-Schrödinger-Straße D-67663 Kaiserslautern (Allemagne)},
author = {Brînzănescu, Vasile, Halanay, Andrei D., Trautmann, Günther},
journal = {Annales de l’institut Fourier},
keywords = {non-Kähler principal elliptic bundles; Calabi-Yau type threefolds; holomorphic vector bundles; moduli spaces},
language = {eng},
number = {3},
pages = {1033-1054},
publisher = {Association des Annales de l’institut Fourier},
title = {Vector bundles on non-Kaehler elliptic principal bundles},
url = {http://eudml.org/doc/275468},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Brînzănescu, Vasile
AU - Halanay, Andrei D.
AU - Trautmann, Günther
TI - Vector bundles on non-Kaehler elliptic principal bundles
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 3
SP - 1033
EP - 1054
AB - We study relatively semi-stable vector bundles and their moduli on non-Kähler principal elliptic bundles over compact complex manifolds of arbitrary dimension. The main technical tools used are the twisted Fourier-Mukai transform and a spectral cover construction. For the important example of such principal bundles, the numerical invariants of a 3-dimensional non-Kähler elliptic principal bundle over a primary Kodaira surface are computed.
LA - eng
KW - non-Kähler principal elliptic bundles; Calabi-Yau type threefolds; holomorphic vector bundles; moduli spaces
UR - http://eudml.org/doc/275468
ER -

References

top
  1. Nicolas Addington, The Derived Category of the Intersection of Four Quadrics, (2009) 
  2. Nicolas Addington, Spinor sheaves on singular quadrics, Proc. Amer. Math. Soc. 139 (2011), 3867-3879 Zbl1235.14038MR2823033
  3. M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414-452 Zbl0084.17305MR131423
  4. Daniel Barlet, Espace analytique réduit des cycles analytiques complexes compacts d’un espace analytique complexe de dimension finie, Fonctions de plusieurs variables complexes, II (Sém. François Norguet, 1974–1975) (1975), 1-158. Lecture Notes in Math., Vol. 482, Springer, Berlin Zbl0331.32008MR399503
  5. W. Barth, C. Peters, A. Van de Ven, Compact complex surfaces, 4 (1984), Springer-Verlag, Berlin Zbl1036.14016MR749574
  6. Claudio Bartocci, Ugo Bruzzo, Daniel Hernández Ruipérez, Fourier-Mukai and Nahm transforms in geometry and mathematical physics, 276 (2009), Birkhäuser Boston Inc., Boston, MA Zbl1186.14001MR2511017
  7. Claudio Bartocci, Ugo Bruzzo, Daniel Hernández Ruipérez, José M. Muñoz Porras, Mirror symmetry on K 3 surfaces via Fourier-Mukai transform, Comm. Math. Phys. 195 (1998), 79-93 Zbl0930.14028MR1637405
  8. Katrin Becker, Melanie Becker, Keshav Dasgupta, Paul S. Green, Compactifications of heterotic theory on non-Kähler complex manifolds. I, J. High Energy Phys. (2003) Zbl1097.81703MR1989858
  9. Oren Ben-Bassat, Twisting derived equivalences, Trans. Amer. Math. Soc. 361 (2009), 5469-5504 Zbl1177.14037MR2515820
  10. Christina Birkenhake, Herbert Lange, Complex abelian varieties, 302 (2004), Springer-Verlag, Berlin Zbl0779.14012MR2062673
  11. A. Bondal, D. Orlov, Semiorthogonal decomposition for algebraic varieties, (1995) 
  12. Tom Bridgeland, Fourier-Mukai transforms for elliptic surfaces, J. Reine Angew. Math. 498 (1998), 115-133 Zbl0905.14020MR1629929
  13. Tom Bridgeland, Equivalences of triangulated categories and Fourier-Mukai transforms, Bull. London Math. Soc. 31 (1999), 25-34 Zbl0937.18012MR1651025
  14. Tom Bridgeland, Antony Maciocia, Fourier-Mukai transforms for K 3 and elliptic fibrations, J. Algebraic Geom. 11 (2002), 629-657 Zbl1066.14047MR1910263
  15. Vasile Brînzănescu, Ruxandra Moraru, Stable bundles on non-Kähler elliptic surfaces, Comm. Math. Phys. 254 (2005), 565-580 Zbl1071.32009MR2126483
  16. Vasile Brînzănescu, Ruxandra Moraru, Twisted Fourier-Mukai transforms and bundles on non-Kähler elliptic surfaces, Math. Res. Lett. 13 (2006), 501-514 Zbl1133.14040MR2250486
  17. Vasile Brînzǎnescu, Kenji Ueno, Néron-Severi group for torus quasi bundles over curves, Moduli of vector bundles (Sanda, 1994; Kyoto, 1994) 179 (1996), 11-32, Dekker, New York Zbl0883.14015MR1397977
  18. Igor Burban, Bernd Kreußler, On a relative Fourier-Mukai transform on genus one fibrations, Manuscripta Math. 120 (2006), 283-306 Zbl1105.18011MR2243564
  19. Andrei Căldăraru, Derived categories of twisted sheaves on elliptic threefolds, J. Reine Angew. Math. 544 (2002), 161-179 Zbl0995.14012MR1887894
  20. Andrei Căldăraru, Jacques Distler, Simeon Hellerman, Tony Pantev, Eric Sharpe, Non-birational twisted derived equivalences in abelian GLSMs, Comm. Math. Phys. 294 (2010), 605-645 Zbl1231.14035MR2585982
  21. Andrei Horia Caldararu, Derived categories of twisted sheaves on Calabi-Yau manifolds, (2000), ProQuest LLC, Ann Arbor, MI MR2700538
  22. G. L. Cardoso, G. Curio, G. Dall’Agata, D. Lüst, P. Manousselis, G. Zoupanos, Non-Kähler string backgrounds and their five torsion classes, Nuclear Phys. B 652 (2003), 5-34 Zbl1010.83063MR1959324
  23. P. Deligne, Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Inst. Hautes Études Sci. Publ. Math. (1968), 259-278 Zbl0159.22501MR244265
  24. Ron Y. Donagi, Spectral covers, Current topics in complex algebraic geometry (Berkeley, CA, 1992/93) 28 (1995), 65-86, Cambridge Univ. Press, Cambridge Zbl0877.14026MR1397059
  25. Ron Y. Donagi, Principal bundles on elliptic fibrations, Asian J. Math. 1 (1997), 214-223 Zbl0927.14006MR1491982
  26. Ron Y. Donagi, Tony Pantev, Torus fibrations, gerbes, and duality, Mem. Amer. Math. Soc. 193 (2008) Zbl1140.14001MR2399730
  27. A. Douady, Flatness and privilege, Enseignement Math. (2) 14 (1968), 47-74 Zbl0183.35102MR236420
  28. David Eisenbud, Commutative algebra, 150 (1995), Springer-Verlag, New York Zbl0819.13001MR1322960
  29. Robert Friedman, Rank two vector bundles over regular elliptic surfaces, Invent. Math. 96 (1989), 283-332 Zbl0671.14006MR989699
  30. Robert Friedman, John W. Morgan, Edward Witten, Vector bundles over elliptic fibrations, J. Algebraic Geom. 8 (1999), 279-401 Zbl0937.14004MR1675162
  31. Edward Goldstein, Sergey Prokushkin, Geometric model for complex non-Kähler manifolds with SU ( 3 ) structure, Comm. Math. Phys. 251 (2004), 65-78 Zbl1085.32009MR2096734
  32. Robin Hartshorne, Algebraic geometry, (1977), Springer-Verlag, New York Zbl0531.14001MR463157
  33. F. Hirzebruch, Topological methods in algebraic geometry, (1966), Springer-Verlag New York, Inc., New York Zbl0376.14001MR1335917
  34. Thomas Höfer, Remarks on torus principal bundles, J. Math. Kyoto Univ. 33 (1993), 227-259 Zbl0788.32023MR1203897
  35. D. Huybrechts, Fourier-Mukai transforms in algebraic geometry, (2006), The Clarendon Press Oxford University Press, Oxford Zbl1095.14002MR2244106
  36. Daniel Huybrechts, Manfred Lehn, The geometry of moduli spaces of sheaves, (1997), Friedr. Vieweg & Sohn, Braunschweig Zbl0872.14002MR1450870
  37. Anton Kapustin, Dmitri Orlov, Vertex algebras, mirror symmetry, and D-branes: the case of complex tori, Comm. Math. Phys. 233 (2003), 79-136 Zbl1051.17017MR1957733
  38. Alexander Kuznetsov, Derived categories of quadric fibrations and intersections of quadrics, Adv. Math. 218 (2008), 1340-1369 Zbl1168.14012MR2419925
  39. Shigeru Mukai, Duality between D ( X ) and D ( X ^ ) with its application to Picard sheaves, Nagoya Math. J. 81 (1981), 153-175 Zbl0417.14036MR607081
  40. David Mumford, Abelian varieties, (1970), Published for the Tata Institute of Fundamental Research, Bombay Zbl0223.14022MR282985
  41. D. O. Orlov, Derived categories of coherent sheaves and equivalences between them, Uspekhi Mat. Nauk 58 (2003), 89-172 Zbl1118.14021MR1998775
  42. Geneviève Pourcin, Théorème de Douady au-dessus de S , Ann. Scuola Norm. Sup. Pisa (3) 23 (1969), 451-459 Zbl0186.14003MR257402
  43. D. Hernández Ruipérez, J. M. Muñoz Porras, Stable sheaves on elliptic fibrations, J. Geom. Phys. 43 (2002), 163-183 Zbl1068.14051MR1919209
  44. Loring W. Tu, Semistable bundles over an elliptic curve, Adv. Math. 98 (1993), 1-26 Zbl0786.14021MR1212625

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.