Vector bundles on non-Kaehler elliptic principal bundles
Vasile Brînzănescu[1]; Andrei D. Halanay[2]; Günther Trautmann[3]
- [1] “Simion Stoilow” Institute of Mathematics of the Romanian Academy P.O.Box 1-764, 014700 Bucharest (Romania)
- [2] University of Bucharest Faculty of Mathematics and Computer Science Str. Academiei 14 010014 Bucharest (Romania)
- [3] Universität Kaiserslautern Fachbereich Mathematik Erwin-Schrödinger-Straße D-67663 Kaiserslautern (Allemagne)
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 3, page 1033-1054
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBrînzănescu, Vasile, Halanay, Andrei D., and Trautmann, Günther. "Vector bundles on non-Kaehler elliptic principal bundles." Annales de l’institut Fourier 63.3 (2013): 1033-1054. <http://eudml.org/doc/275468>.
@article{Brînzănescu2013,
abstract = {We study relatively semi-stable vector bundles and their moduli on non-Kähler principal elliptic bundles over compact complex manifolds of arbitrary dimension. The main technical tools used are the twisted Fourier-Mukai transform and a spectral cover construction. For the important example of such principal bundles, the numerical invariants of a 3-dimensional non-Kähler elliptic principal bundle over a primary Kodaira surface are computed.},
affiliation = {“Simion Stoilow” Institute of Mathematics of the Romanian Academy P.O.Box 1-764, 014700 Bucharest (Romania); University of Bucharest Faculty of Mathematics and Computer Science Str. Academiei 14 010014 Bucharest (Romania); Universität Kaiserslautern Fachbereich Mathematik Erwin-Schrödinger-Straße D-67663 Kaiserslautern (Allemagne)},
author = {Brînzănescu, Vasile, Halanay, Andrei D., Trautmann, Günther},
journal = {Annales de l’institut Fourier},
keywords = {non-Kähler principal elliptic bundles; Calabi-Yau type threefolds; holomorphic vector bundles; moduli spaces},
language = {eng},
number = {3},
pages = {1033-1054},
publisher = {Association des Annales de l’institut Fourier},
title = {Vector bundles on non-Kaehler elliptic principal bundles},
url = {http://eudml.org/doc/275468},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Brînzănescu, Vasile
AU - Halanay, Andrei D.
AU - Trautmann, Günther
TI - Vector bundles on non-Kaehler elliptic principal bundles
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 3
SP - 1033
EP - 1054
AB - We study relatively semi-stable vector bundles and their moduli on non-Kähler principal elliptic bundles over compact complex manifolds of arbitrary dimension. The main technical tools used are the twisted Fourier-Mukai transform and a spectral cover construction. For the important example of such principal bundles, the numerical invariants of a 3-dimensional non-Kähler elliptic principal bundle over a primary Kodaira surface are computed.
LA - eng
KW - non-Kähler principal elliptic bundles; Calabi-Yau type threefolds; holomorphic vector bundles; moduli spaces
UR - http://eudml.org/doc/275468
ER -
References
top- Nicolas Addington, The Derived Category of the Intersection of Four Quadrics, (2009)
- Nicolas Addington, Spinor sheaves on singular quadrics, Proc. Amer. Math. Soc. 139 (2011), 3867-3879 Zbl1235.14038MR2823033
- M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414-452 Zbl0084.17305MR131423
- Daniel Barlet, Espace analytique réduit des cycles analytiques complexes compacts d’un espace analytique complexe de dimension finie, Fonctions de plusieurs variables complexes, II (Sém. François Norguet, 1974–1975) (1975), 1-158. Lecture Notes in Math., Vol. 482, Springer, Berlin Zbl0331.32008MR399503
- W. Barth, C. Peters, A. Van de Ven, Compact complex surfaces, 4 (1984), Springer-Verlag, Berlin Zbl1036.14016MR749574
- Claudio Bartocci, Ugo Bruzzo, Daniel Hernández Ruipérez, Fourier-Mukai and Nahm transforms in geometry and mathematical physics, 276 (2009), Birkhäuser Boston Inc., Boston, MA Zbl1186.14001MR2511017
- Claudio Bartocci, Ugo Bruzzo, Daniel Hernández Ruipérez, José M. Muñoz Porras, Mirror symmetry on surfaces via Fourier-Mukai transform, Comm. Math. Phys. 195 (1998), 79-93 Zbl0930.14028MR1637405
- Katrin Becker, Melanie Becker, Keshav Dasgupta, Paul S. Green, Compactifications of heterotic theory on non-Kähler complex manifolds. I, J. High Energy Phys. (2003) Zbl1097.81703MR1989858
- Oren Ben-Bassat, Twisting derived equivalences, Trans. Amer. Math. Soc. 361 (2009), 5469-5504 Zbl1177.14037MR2515820
- Christina Birkenhake, Herbert Lange, Complex abelian varieties, 302 (2004), Springer-Verlag, Berlin Zbl0779.14012MR2062673
- A. Bondal, D. Orlov, Semiorthogonal decomposition for algebraic varieties, (1995)
- Tom Bridgeland, Fourier-Mukai transforms for elliptic surfaces, J. Reine Angew. Math. 498 (1998), 115-133 Zbl0905.14020MR1629929
- Tom Bridgeland, Equivalences of triangulated categories and Fourier-Mukai transforms, Bull. London Math. Soc. 31 (1999), 25-34 Zbl0937.18012MR1651025
- Tom Bridgeland, Antony Maciocia, Fourier-Mukai transforms for and elliptic fibrations, J. Algebraic Geom. 11 (2002), 629-657 Zbl1066.14047MR1910263
- Vasile Brînzănescu, Ruxandra Moraru, Stable bundles on non-Kähler elliptic surfaces, Comm. Math. Phys. 254 (2005), 565-580 Zbl1071.32009MR2126483
- Vasile Brînzănescu, Ruxandra Moraru, Twisted Fourier-Mukai transforms and bundles on non-Kähler elliptic surfaces, Math. Res. Lett. 13 (2006), 501-514 Zbl1133.14040MR2250486
- Vasile Brînzǎnescu, Kenji Ueno, Néron-Severi group for torus quasi bundles over curves, Moduli of vector bundles (Sanda, 1994; Kyoto, 1994) 179 (1996), 11-32, Dekker, New York Zbl0883.14015MR1397977
- Igor Burban, Bernd Kreußler, On a relative Fourier-Mukai transform on genus one fibrations, Manuscripta Math. 120 (2006), 283-306 Zbl1105.18011MR2243564
- Andrei Căldăraru, Derived categories of twisted sheaves on elliptic threefolds, J. Reine Angew. Math. 544 (2002), 161-179 Zbl0995.14012MR1887894
- Andrei Căldăraru, Jacques Distler, Simeon Hellerman, Tony Pantev, Eric Sharpe, Non-birational twisted derived equivalences in abelian GLSMs, Comm. Math. Phys. 294 (2010), 605-645 Zbl1231.14035MR2585982
- Andrei Horia Caldararu, Derived categories of twisted sheaves on Calabi-Yau manifolds, (2000), ProQuest LLC, Ann Arbor, MI MR2700538
- G. L. Cardoso, G. Curio, G. Dall’Agata, D. Lüst, P. Manousselis, G. Zoupanos, Non-Kähler string backgrounds and their five torsion classes, Nuclear Phys. B 652 (2003), 5-34 Zbl1010.83063MR1959324
- P. Deligne, Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Inst. Hautes Études Sci. Publ. Math. (1968), 259-278 Zbl0159.22501MR244265
- Ron Y. Donagi, Spectral covers, Current topics in complex algebraic geometry (Berkeley, CA, 1992/93) 28 (1995), 65-86, Cambridge Univ. Press, Cambridge Zbl0877.14026MR1397059
- Ron Y. Donagi, Principal bundles on elliptic fibrations, Asian J. Math. 1 (1997), 214-223 Zbl0927.14006MR1491982
- Ron Y. Donagi, Tony Pantev, Torus fibrations, gerbes, and duality, Mem. Amer. Math. Soc. 193 (2008) Zbl1140.14001MR2399730
- A. Douady, Flatness and privilege, Enseignement Math. (2) 14 (1968), 47-74 Zbl0183.35102MR236420
- David Eisenbud, Commutative algebra, 150 (1995), Springer-Verlag, New York Zbl0819.13001MR1322960
- Robert Friedman, Rank two vector bundles over regular elliptic surfaces, Invent. Math. 96 (1989), 283-332 Zbl0671.14006MR989699
- Robert Friedman, John W. Morgan, Edward Witten, Vector bundles over elliptic fibrations, J. Algebraic Geom. 8 (1999), 279-401 Zbl0937.14004MR1675162
- Edward Goldstein, Sergey Prokushkin, Geometric model for complex non-Kähler manifolds with structure, Comm. Math. Phys. 251 (2004), 65-78 Zbl1085.32009MR2096734
- Robin Hartshorne, Algebraic geometry, (1977), Springer-Verlag, New York Zbl0531.14001MR463157
- F. Hirzebruch, Topological methods in algebraic geometry, (1966), Springer-Verlag New York, Inc., New York Zbl0376.14001MR1335917
- Thomas Höfer, Remarks on torus principal bundles, J. Math. Kyoto Univ. 33 (1993), 227-259 Zbl0788.32023MR1203897
- D. Huybrechts, Fourier-Mukai transforms in algebraic geometry, (2006), The Clarendon Press Oxford University Press, Oxford Zbl1095.14002MR2244106
- Daniel Huybrechts, Manfred Lehn, The geometry of moduli spaces of sheaves, (1997), Friedr. Vieweg & Sohn, Braunschweig Zbl0872.14002MR1450870
- Anton Kapustin, Dmitri Orlov, Vertex algebras, mirror symmetry, and D-branes: the case of complex tori, Comm. Math. Phys. 233 (2003), 79-136 Zbl1051.17017MR1957733
- Alexander Kuznetsov, Derived categories of quadric fibrations and intersections of quadrics, Adv. Math. 218 (2008), 1340-1369 Zbl1168.14012MR2419925
- Shigeru Mukai, Duality between and with its application to Picard sheaves, Nagoya Math. J. 81 (1981), 153-175 Zbl0417.14036MR607081
- David Mumford, Abelian varieties, (1970), Published for the Tata Institute of Fundamental Research, Bombay Zbl0223.14022MR282985
- D. O. Orlov, Derived categories of coherent sheaves and equivalences between them, Uspekhi Mat. Nauk 58 (2003), 89-172 Zbl1118.14021MR1998775
- Geneviève Pourcin, Théorème de Douady au-dessus de , Ann. Scuola Norm. Sup. Pisa (3) 23 (1969), 451-459 Zbl0186.14003MR257402
- D. Hernández Ruipérez, J. M. Muñoz Porras, Stable sheaves on elliptic fibrations, J. Geom. Phys. 43 (2002), 163-183 Zbl1068.14051MR1919209
- Loring W. Tu, Semistable bundles over an elliptic curve, Adv. Math. 98 (1993), 1-26 Zbl0786.14021MR1212625
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.