Optimal potentials for Schrödinger operators

Giuseppe Buttazzo[1]; Augusto Gerolin[1]; Berardo Ruffini[2]; Bozhidar Velichkov[1]

  • [1] Dipartimento di Matematica, Università di Pisa Largo B. Pontecorvo 5, 56127 Pisa, Italy
  • [2] Laboratoire Jean Kuntzmann, Université de Grenoble BP 53, 38041 Grenoble Cedex 9, France

Journal de l’École polytechnique — Mathématiques (2014)

  • Volume: 1, page 71-100
  • ISSN: 2270-518X

Abstract

top
We consider the Schrödinger operator - Δ + V ( x ) on H 0 1 ( Ω ) , where Ω is a given domain of d . Our goal is to study some optimization problems where an optimal potential V 0 has to be determined in some suitable admissible classes and for some suitable optimization criteria, like the energy or the Dirichlet eigenvalues.

How to cite

top

Buttazzo, Giuseppe, et al. "Optimal potentials for Schrödinger operators." Journal de l’École polytechnique — Mathématiques 1 (2014): 71-100. <http://eudml.org/doc/275470>.

@article{Buttazzo2014,
abstract = {We consider the Schrödinger operator $-\Delta +V(x)$ on $H^1_0(\Omega )$, where $\Omega $ is a given domain of $\mathbb\{R\}^d$. Our goal is to study some optimization problems where an optimal potential $V\ge 0$ has to be determined in some suitable admissible classes and for some suitable optimization criteria, like the energy or the Dirichlet eigenvalues.},
affiliation = {Dipartimento di Matematica, Università di Pisa Largo B. Pontecorvo 5, 56127 Pisa, Italy; Dipartimento di Matematica, Università di Pisa Largo B. Pontecorvo 5, 56127 Pisa, Italy; Laboratoire Jean Kuntzmann, Université de Grenoble BP 53, 38041 Grenoble Cedex 9, France; Dipartimento di Matematica, Università di Pisa Largo B. Pontecorvo 5, 56127 Pisa, Italy},
author = {Buttazzo, Giuseppe, Gerolin, Augusto, Ruffini, Berardo, Velichkov, Bozhidar},
journal = {Journal de l’École polytechnique — Mathématiques},
keywords = {Schrödinger operators; optimal potentials; spectral optimization; capacity},
language = {eng},
pages = {71-100},
publisher = {École polytechnique},
title = {Optimal potentials for Schrödinger operators},
url = {http://eudml.org/doc/275470},
volume = {1},
year = {2014},
}

TY - JOUR
AU - Buttazzo, Giuseppe
AU - Gerolin, Augusto
AU - Ruffini, Berardo
AU - Velichkov, Bozhidar
TI - Optimal potentials for Schrödinger operators
JO - Journal de l’École polytechnique — Mathématiques
PY - 2014
PB - École polytechnique
VL - 1
SP - 71
EP - 100
AB - We consider the Schrödinger operator $-\Delta +V(x)$ on $H^1_0(\Omega )$, where $\Omega $ is a given domain of $\mathbb{R}^d$. Our goal is to study some optimization problems where an optimal potential $V\ge 0$ has to be determined in some suitable admissible classes and for some suitable optimization criteria, like the energy or the Dirichlet eigenvalues.
LA - eng
KW - Schrödinger operators; optimal potentials; spectral optimization; capacity
UR - http://eudml.org/doc/275470
ER -

References

top
  1. H. W. Alt, L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math. 325 (1981), 105-144 Zbl0449.35105MR618549
  2. M. S. Ashbaugh, E. M. Harrell, Maximal and minimal eigenvalues and their associated nonlinear equations, J. Math. Phys. 28 (1987), 1770-1786 Zbl0628.47032MR899179
  3. T. Briançon, J. Lamboley, Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), 1149-1163 Zbl1194.49059MR2542718
  4. D. Bucur, G. Buttazzo, Variational methods in shape optimization problems, 65 (2005), Birkhäuser Boston, Inc., Boston, MA Zbl1117.49001MR2150214
  5. D. Bucur, G. Buttazzo, On the characterization of the compact embedding of Sobolev spaces, Calc. Var. Partial Differential Equations 44 (2012), 455-475 Zbl1241.49023MR2915329
  6. D. Bucur, G. Buttazzo, B. Velichkov, Spectral optimization problems for potentials and measures Zbl1301.49122
  7. G. Buttazzo, Semicontinuity, relaxation and integral representation in the calculus of variations, 207 (1989), Longman Scientific & Technical, Harlow Zbl0669.49005MR1020296
  8. G. Buttazzo, Spectral optimization problems, Rev. Mat. Univ. Complut. Madrid 24 (2011), 277-322 Zbl1226.49038MR2806346
  9. G. Buttazzo, G. Dal Maso, Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions, Appl. Math. Optim. 23 (1991), 17-49 Zbl0762.49017MR1076053
  10. G. Buttazzo, G. Dal Maso, An existence result for a class of shape optimization problems, Arch. Rational Mech. Anal. 122 (1993), 183-195 Zbl0811.49028MR1217590
  11. G. Buttazzo, N. Varchon, H. Zoubairi, Optimal measures for elliptic problems, Ann. Mat. Pura Appl. (4) 185 (2006), 207-221 Zbl1232.49049MR2214133
  12. E. A. Carlen, R. L. Frank, E. H. Lieb, Stability estimates for the lowest eigenvalue of a Schrödinger operator, Geom. Funct. Anal. 24 (2014), 63-84 Zbl1291.35145MR3177378
  13. G. Dal Maso, An introduction to Γ -convergence, 8 (1993), Birkhäuser Boston, Inc., Boston, MA Zbl0816.49001MR1201152
  14. G. Dal Maso, U. Mosco, Wiener’s criterion and Γ -convergence, Appl. Math. Optim. 15 (1987), 15-63 Zbl0644.35033MR866165
  15. H. Egnell, Extremal properties of the first eigenvalue of a class of elliptic eigenvalue problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), 1-48 Zbl0649.35072MR937535
  16. M. Essén, On estimating eigenvalues of a second order linear differential operator, General inequalities, 5 (Oberwolfach, 1986) 80 (1987), 347-366, Birkhäuser, Basel Zbl0625.34019MR1018159
  17. L. C. Evans, Partial differential equations, 19 (2010), American Mathematical Society, Providence, RI Zbl1194.35001MR2597943
  18. L. C. Evans, R. F. Gariepy, Measure theory and fine properties of functions, (1992), CRC Press, Boca Raton, FL Zbl0804.28001MR1158660
  19. D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, (2001), Springer-Verlag, Berlin Zbl1042.35002MR1814364
  20. E. M. Harrell, Hamiltonian operators with maximal eigenvalues, J. Math. Phys. 25 (1984), 48-51 Zbl0555.35098MR728885
  21. A. Henrot, Minimization problems for eigenvalues of the Laplacian, J. Evol. Equ. 3 (2003), 443-461 Zbl1049.49029MR2019029
  22. A. Henrot, Extremum problems for eigenvalues of elliptic operators, (2006), Birkhäuser Verlag, Basel Zbl1109.35081MR2251558
  23. A. Henrot, M. Pierre, Variation et optimisation de formes. Une analyse géométrique, 48 (2005), Springer, Berlin Zbl1098.49001MR2512810
  24. G. Talenti, Estimates for eigenvalues of Sturm-Liouville problems, General inequalities, 4 (Oberwolfach, 1983) 71 (1984), 341-350, Birkhäuser, Basel Zbl0591.34019MR821811

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.