Optimal potentials for Schrödinger operators
Giuseppe Buttazzo[1]; Augusto Gerolin[1]; Berardo Ruffini[2]; Bozhidar Velichkov[1]
- [1] Dipartimento di Matematica, Università di Pisa Largo B. Pontecorvo 5, 56127 Pisa, Italy
- [2] Laboratoire Jean Kuntzmann, Université de Grenoble BP 53, 38041 Grenoble Cedex 9, France
Journal de l’École polytechnique — Mathématiques (2014)
- Volume: 1, page 71-100
- ISSN: 2270-518X
Access Full Article
topAbstract
topHow to cite
topButtazzo, Giuseppe, et al. "Optimal potentials for Schrödinger operators." Journal de l’École polytechnique — Mathématiques 1 (2014): 71-100. <http://eudml.org/doc/275470>.
@article{Buttazzo2014,
abstract = {We consider the Schrödinger operator $-\Delta +V(x)$ on $H^1_0(\Omega )$, where $\Omega $ is a given domain of $\mathbb\{R\}^d$. Our goal is to study some optimization problems where an optimal potential $V\ge 0$ has to be determined in some suitable admissible classes and for some suitable optimization criteria, like the energy or the Dirichlet eigenvalues.},
affiliation = {Dipartimento di Matematica, Università di Pisa Largo B. Pontecorvo 5, 56127 Pisa, Italy; Dipartimento di Matematica, Università di Pisa Largo B. Pontecorvo 5, 56127 Pisa, Italy; Laboratoire Jean Kuntzmann, Université de Grenoble BP 53, 38041 Grenoble Cedex 9, France; Dipartimento di Matematica, Università di Pisa Largo B. Pontecorvo 5, 56127 Pisa, Italy},
author = {Buttazzo, Giuseppe, Gerolin, Augusto, Ruffini, Berardo, Velichkov, Bozhidar},
journal = {Journal de l’École polytechnique — Mathématiques},
keywords = {Schrödinger operators; optimal potentials; spectral optimization; capacity},
language = {eng},
pages = {71-100},
publisher = {École polytechnique},
title = {Optimal potentials for Schrödinger operators},
url = {http://eudml.org/doc/275470},
volume = {1},
year = {2014},
}
TY - JOUR
AU - Buttazzo, Giuseppe
AU - Gerolin, Augusto
AU - Ruffini, Berardo
AU - Velichkov, Bozhidar
TI - Optimal potentials for Schrödinger operators
JO - Journal de l’École polytechnique — Mathématiques
PY - 2014
PB - École polytechnique
VL - 1
SP - 71
EP - 100
AB - We consider the Schrödinger operator $-\Delta +V(x)$ on $H^1_0(\Omega )$, where $\Omega $ is a given domain of $\mathbb{R}^d$. Our goal is to study some optimization problems where an optimal potential $V\ge 0$ has to be determined in some suitable admissible classes and for some suitable optimization criteria, like the energy or the Dirichlet eigenvalues.
LA - eng
KW - Schrödinger operators; optimal potentials; spectral optimization; capacity
UR - http://eudml.org/doc/275470
ER -
References
top- H. W. Alt, L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math. 325 (1981), 105-144 Zbl0449.35105MR618549
- M. S. Ashbaugh, E. M. Harrell, Maximal and minimal eigenvalues and their associated nonlinear equations, J. Math. Phys. 28 (1987), 1770-1786 Zbl0628.47032MR899179
- T. Briançon, J. Lamboley, Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), 1149-1163 Zbl1194.49059MR2542718
- D. Bucur, G. Buttazzo, Variational methods in shape optimization problems, 65 (2005), Birkhäuser Boston, Inc., Boston, MA Zbl1117.49001MR2150214
- D. Bucur, G. Buttazzo, On the characterization of the compact embedding of Sobolev spaces, Calc. Var. Partial Differential Equations 44 (2012), 455-475 Zbl1241.49023MR2915329
- D. Bucur, G. Buttazzo, B. Velichkov, Spectral optimization problems for potentials and measures Zbl1301.49122
- G. Buttazzo, Semicontinuity, relaxation and integral representation in the calculus of variations, 207 (1989), Longman Scientific & Technical, Harlow Zbl0669.49005MR1020296
- G. Buttazzo, Spectral optimization problems, Rev. Mat. Univ. Complut. Madrid 24 (2011), 277-322 Zbl1226.49038MR2806346
- G. Buttazzo, G. Dal Maso, Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions, Appl. Math. Optim. 23 (1991), 17-49 Zbl0762.49017MR1076053
- G. Buttazzo, G. Dal Maso, An existence result for a class of shape optimization problems, Arch. Rational Mech. Anal. 122 (1993), 183-195 Zbl0811.49028MR1217590
- G. Buttazzo, N. Varchon, H. Zoubairi, Optimal measures for elliptic problems, Ann. Mat. Pura Appl. (4) 185 (2006), 207-221 Zbl1232.49049MR2214133
- E. A. Carlen, R. L. Frank, E. H. Lieb, Stability estimates for the lowest eigenvalue of a Schrödinger operator, Geom. Funct. Anal. 24 (2014), 63-84 Zbl1291.35145MR3177378
- G. Dal Maso, An introduction to -convergence, 8 (1993), Birkhäuser Boston, Inc., Boston, MA Zbl0816.49001MR1201152
- G. Dal Maso, U. Mosco, Wiener’s criterion and -convergence, Appl. Math. Optim. 15 (1987), 15-63 Zbl0644.35033MR866165
- H. Egnell, Extremal properties of the first eigenvalue of a class of elliptic eigenvalue problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), 1-48 Zbl0649.35072MR937535
- M. Essén, On estimating eigenvalues of a second order linear differential operator, General inequalities, 5 (Oberwolfach, 1986) 80 (1987), 347-366, Birkhäuser, Basel Zbl0625.34019MR1018159
- L. C. Evans, Partial differential equations, 19 (2010), American Mathematical Society, Providence, RI Zbl1194.35001MR2597943
- L. C. Evans, R. F. Gariepy, Measure theory and fine properties of functions, (1992), CRC Press, Boca Raton, FL Zbl0804.28001MR1158660
- D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, (2001), Springer-Verlag, Berlin Zbl1042.35002MR1814364
- E. M. Harrell, Hamiltonian operators with maximal eigenvalues, J. Math. Phys. 25 (1984), 48-51 Zbl0555.35098MR728885
- A. Henrot, Minimization problems for eigenvalues of the Laplacian, J. Evol. Equ. 3 (2003), 443-461 Zbl1049.49029MR2019029
- A. Henrot, Extremum problems for eigenvalues of elliptic operators, (2006), Birkhäuser Verlag, Basel Zbl1109.35081MR2251558
- A. Henrot, M. Pierre, Variation et optimisation de formes. Une analyse géométrique, 48 (2005), Springer, Berlin Zbl1098.49001MR2512810
- G. Talenti, Estimates for eigenvalues of Sturm-Liouville problems, General inequalities, 4 (Oberwolfach, 1983) 71 (1984), 341-350, Birkhäuser, Basel Zbl0591.34019MR821811
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.