Quantum Cohomology and Crepant Resolutions: A Conjecture
Tom Coates[1]; Yongbin Ruan[2]
- [1] Imperial College London Department of Mathematics London SW7 2AZ United Kingdom
- [2] Department of Mathematics University of Michigan Ann Arbor MI 48105 USA
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 2, page 431-478
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCoates, Tom, and Ruan, Yongbin. "Quantum Cohomology and Crepant Resolutions: A Conjecture." Annales de l’institut Fourier 63.2 (2013): 431-478. <http://eudml.org/doc/275500>.
@article{Coates2013,
abstract = {We give an expository account of a conjecture, developed by Coates–Iritani–Tseng and Ruan, which relates the quantum cohomology of a Gorenstein orbifold $\mathcal\{X\}$ to the quantum cohomology of a crepant resolution $Y$ of $\mathcal\{X\}$. We explore some consequences of this conjecture, showing that it implies versions of both the Cohomological Crepant Resolution Conjecture and of the Crepant Resolution Conjectures of Ruan and Bryan–Graber. We also give a ‘quantized’ version of the conjecture, which determines higher-genus Gromov–Witten invariants of $\mathcal\{X\}$ from those of $Y$.},
affiliation = {Imperial College London Department of Mathematics London SW7 2AZ United Kingdom; Department of Mathematics University of Michigan Ann Arbor MI 48105 USA},
author = {Coates, Tom, Ruan, Yongbin},
journal = {Annales de l’institut Fourier},
keywords = {Quantum cohomology; orbifold; crepant resolution; Gromov–Witten invariants; crepant resolution conjecture; quantum cohomology; Gromov-Witten invariants},
language = {eng},
number = {2},
pages = {431-478},
publisher = {Association des Annales de l’institut Fourier},
title = {Quantum Cohomology and Crepant Resolutions: A Conjecture},
url = {http://eudml.org/doc/275500},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Coates, Tom
AU - Ruan, Yongbin
TI - Quantum Cohomology and Crepant Resolutions: A Conjecture
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 2
SP - 431
EP - 478
AB - We give an expository account of a conjecture, developed by Coates–Iritani–Tseng and Ruan, which relates the quantum cohomology of a Gorenstein orbifold $\mathcal{X}$ to the quantum cohomology of a crepant resolution $Y$ of $\mathcal{X}$. We explore some consequences of this conjecture, showing that it implies versions of both the Cohomological Crepant Resolution Conjecture and of the Crepant Resolution Conjectures of Ruan and Bryan–Graber. We also give a ‘quantized’ version of the conjecture, which determines higher-genus Gromov–Witten invariants of $\mathcal{X}$ from those of $Y$.
LA - eng
KW - Quantum cohomology; orbifold; crepant resolution; Gromov–Witten invariants; crepant resolution conjecture; quantum cohomology; Gromov-Witten invariants
UR - http://eudml.org/doc/275500
ER -
References
top- Dan Abramovich, Tom Graber, Angelo Vistoli, Algebraic orbifold quantum products, Orbifolds in mathematics and physics 310 (2002), 1-24, Amer. Math. Soc., Providence, RI, Madison, WI, 2001 Zbl1067.14055MR1950940
- Dan Abramovich, Tom Graber, Angelo Vistoli, Gromov-Witten theory of Deligne-Mumford stacks, Amer. J. Math. 130 (2008), 1337-1398 Zbl1193.14070MR2450211
- Mina Aganagic, Vincent Bouchard, Albrecht Klemm, Topological strings and (almost) modular forms, Comm. Math. Phys. 277 (2008), 771-819 Zbl1165.81037MR2365453
- Paul S. Aspinwall, Brian R. Greene, David R. Morrison, Calabi-Yau moduli space, mirror manifolds and spacetime topology change in string theory, Nuclear Phys. B 416 (1994), 414-480 Zbl0899.32006MR1274435
- Serguei Barannikov, Quantum periods. I. Semi-infinite variations of Hodge structures, Internat. Math. Res. Notices (2001), 1243-1264 Zbl1074.14510MR1866443
- A. A. Beĭlinson, J. Bernstein, P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I 100 (1982), 5-171, Soc. Math. France, Luminy, 1981 Zbl0536.14011MR751966
- Jim Bryan, Tom Graber, The crepant resolution conjecture, Algebraic geometry—Seattle 2005. Part 1 80 (2009), 23-42, Amer. Math. Soc., Providence, RI Zbl1198.14053MR2483931
- Jim Bryan, Tom Graber, Rahul Pandharipande, The orbifold quantum cohomology of and Hurwitz-Hodge integrals, J. Algebraic Geom. 17 (2008), 1-28 Zbl1129.14075MR2357679
- Weimin Chen, Yongbin Ruan, Orbifold Gromov–Witten theory, Orbifolds in mathematics and physics 310 (2002), 25-85, Amer. Math. Soc., Providence, RI, Madison, WI, 2001 Zbl1091.53058MR1950941
- Weimin Chen, Yongbin Ruan, A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004), 1-31 Zbl1063.53091MR2104605
- Tom Coates, Givental’s Lagrangian cone and -equivariant Gromov-Witten theory, Math. Res. Lett. 15 (2008), 15-31 Zbl1169.14037MR2367170
- Tom Coates, On the crepant resolution conjecture in the local case, Comm. Math. Phys. 287 (2009), 1071-1108 Zbl1200.53081MR2486673
- Tom Coates, Alexander Givental, Quantum Riemann-Roch, Lefschetz and Serre, Ann. of Math. (2) 165 (2007), 15-53 Zbl1189.14063MR2276766
- Tom Coates, Hiroshi Iritani, Hsian-Hua Tseng, Wall-crossings in toric Gromov-Witten theory. I. Crepant examples, Geom. Topol. 13 (2009), 2675-2744 Zbl1184.53086MR2529944
- Tom Coates, Yuan-Pin Lee, Alessio Corti, Hsian-Hua Tseng, The quantum orbifold cohomology of weighted projective spaces, Acta Math. 202 (2009), 139-193 Zbl1213.53106MR2506749
- David A. Cox, Sheldon Katz, Mirror symmetry and algebraic geometry, 68 (1999), American Mathematical Society, Providence, RI Zbl0951.14026MR1677117
- Boris Dubrovin, Geometry of D topological field theories, Integrable systems and quantum groups 1620 (1996), 120-348, Springer, Berlin, Montecatini Terme, 1993 Zbl0841.58065MR1397274
- Carel Faber, Sergey Shadrin, Dimitri Zvonkine, Tautological relations and the r-spin Witten conjecture Zbl1203.53090MR2722511
- W. Fulton, R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry—Santa Cruz 1995 62 (1997), 45-96, Amer. Math. Soc., Providence, RI Zbl0898.14018MR1492534
- Alexander B. Givental, Homological geometry. I. Projective hypersurfaces, Selecta Math. (N.S.) 1 (1995), 325-345 Zbl0920.14028MR1354600
- Alexander B. Givental, Gromov-Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001), 551-568, 645 Zbl1008.53072MR1901075
- Alexander B. Givental, Symplectic geometry of Frobenius structures, Frobenius manifolds (2004), 91-112, Vieweg, Wiesbaden Zbl1075.53091MR2115767
- C. Hertling, Frobenius manifolds and moduli spaces for singularities, 151 (2002), Cambridge University Press Zbl1023.14018MR1924259
- C. Hertling, Yu. Manin, Weak Frobenius manifolds, Internat. Math. Res. Notices (1999), 277-286 Zbl0960.58003
- Seán Keel, Shigefumi Mori, Quotients by groupoids, Ann. of Math. (2) 145 (1997), 193-213 Zbl0881.14018MR1432041
- Y.-P. Lee, Invariance of tautological equations. I. Conjectures and applications, J. Eur. Math. Soc. (JEMS) 10 (2008), 399-413 Zbl1170.14021MR2390329
- Y.-P. Lee, Invariance of tautological equations. II. Gromov-Witten theory, J. Amer. Math. Soc. 22 (2009), 331-352 Zbl1206.14078MR2476776
- Yuri I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, 47 (1999), American Mathematical Society, Providence, RI Zbl0952.14032MR1702284
- Todor E. Milanov, The equivariant Gromov-Witten theory of and integrable hierarchies, Int. Math. Res. Not. IMRN (2008) Zbl1146.53067MR2439568
- JianZhong Pan, YongBin Ruan, XiaoQin Yin, Gerbes and twisted orbifold quantum cohomology, Sci. China Ser. A 51 (2008), 995-1016 Zbl1146.53069MR2410979
- Fabio Perroni, Chen-Ruan cohomology of singularities, Internat. J. Math. 18 (2007), 1009-1059 Zbl1149.14010MR2360646
- Yongbin Ruan, The cohomology ring of crepant resolutions of orbifolds, Gromov-Witten theory of spin curves and orbifolds 403 (2006), 117-126, Amer. Math. Soc., Providence, RI Zbl1105.14078MR2234886
- Yongbin Ruan, (unpublished)
- Hsian-Hua Tseng, Orbifold quantum Riemann-Roch, Lefschetz and Serre, Geom. Topol. 14 (2010), 1-81 Zbl1178.14058MR2578300
- Edward Witten, Quantum Background Independence In String Theory Zbl0643.53071
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.