Quantum Cohomology and Crepant Resolutions: A Conjecture

Tom Coates[1]; Yongbin Ruan[2]

  • [1] Imperial College London Department of Mathematics London SW7 2AZ United Kingdom
  • [2] Department of Mathematics University of Michigan Ann Arbor MI 48105 USA

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 2, page 431-478
  • ISSN: 0373-0956

Abstract

top
We give an expository account of a conjecture, developed by Coates–Iritani–Tseng and Ruan, which relates the quantum cohomology of a Gorenstein orbifold 𝒳 to the quantum cohomology of a crepant resolution Y of 𝒳 . We explore some consequences of this conjecture, showing that it implies versions of both the Cohomological Crepant Resolution Conjecture and of the Crepant Resolution Conjectures of Ruan and Bryan–Graber. We also give a ‘quantized’ version of the conjecture, which determines higher-genus Gromov–Witten invariants of 𝒳 from those of Y .

How to cite

top

Coates, Tom, and Ruan, Yongbin. "Quantum Cohomology and Crepant Resolutions: A Conjecture." Annales de l’institut Fourier 63.2 (2013): 431-478. <http://eudml.org/doc/275500>.

@article{Coates2013,
abstract = {We give an expository account of a conjecture, developed by Coates–Iritani–Tseng and Ruan, which relates the quantum cohomology of a Gorenstein orbifold $\mathcal\{X\}$ to the quantum cohomology of a crepant resolution $Y$ of $\mathcal\{X\}$. We explore some consequences of this conjecture, showing that it implies versions of both the Cohomological Crepant Resolution Conjecture and of the Crepant Resolution Conjectures of Ruan and Bryan–Graber. We also give a ‘quantized’ version of the conjecture, which determines higher-genus Gromov–Witten invariants of $\mathcal\{X\}$ from those of $Y$.},
affiliation = {Imperial College London Department of Mathematics London SW7 2AZ United Kingdom; Department of Mathematics University of Michigan Ann Arbor MI 48105 USA},
author = {Coates, Tom, Ruan, Yongbin},
journal = {Annales de l’institut Fourier},
keywords = {Quantum cohomology; orbifold; crepant resolution; Gromov–Witten invariants; crepant resolution conjecture; quantum cohomology; Gromov-Witten invariants},
language = {eng},
number = {2},
pages = {431-478},
publisher = {Association des Annales de l’institut Fourier},
title = {Quantum Cohomology and Crepant Resolutions: A Conjecture},
url = {http://eudml.org/doc/275500},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Coates, Tom
AU - Ruan, Yongbin
TI - Quantum Cohomology and Crepant Resolutions: A Conjecture
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 2
SP - 431
EP - 478
AB - We give an expository account of a conjecture, developed by Coates–Iritani–Tseng and Ruan, which relates the quantum cohomology of a Gorenstein orbifold $\mathcal{X}$ to the quantum cohomology of a crepant resolution $Y$ of $\mathcal{X}$. We explore some consequences of this conjecture, showing that it implies versions of both the Cohomological Crepant Resolution Conjecture and of the Crepant Resolution Conjectures of Ruan and Bryan–Graber. We also give a ‘quantized’ version of the conjecture, which determines higher-genus Gromov–Witten invariants of $\mathcal{X}$ from those of $Y$.
LA - eng
KW - Quantum cohomology; orbifold; crepant resolution; Gromov–Witten invariants; crepant resolution conjecture; quantum cohomology; Gromov-Witten invariants
UR - http://eudml.org/doc/275500
ER -

References

top
  1. Dan Abramovich, Tom Graber, Angelo Vistoli, Algebraic orbifold quantum products, Orbifolds in mathematics and physics 310 (2002), 1-24, Amer. Math. Soc., Providence, RI, Madison, WI, 2001 Zbl1067.14055MR1950940
  2. Dan Abramovich, Tom Graber, Angelo Vistoli, Gromov-Witten theory of Deligne-Mumford stacks, Amer. J. Math. 130 (2008), 1337-1398 Zbl1193.14070MR2450211
  3. Mina Aganagic, Vincent Bouchard, Albrecht Klemm, Topological strings and (almost) modular forms, Comm. Math. Phys. 277 (2008), 771-819 Zbl1165.81037MR2365453
  4. Paul S. Aspinwall, Brian R. Greene, David R. Morrison, Calabi-Yau moduli space, mirror manifolds and spacetime topology change in string theory, Nuclear Phys. B 416 (1994), 414-480 Zbl0899.32006MR1274435
  5. Serguei Barannikov, Quantum periods. I. Semi-infinite variations of Hodge structures, Internat. Math. Res. Notices (2001), 1243-1264 Zbl1074.14510MR1866443
  6. A. A. Beĭlinson, J. Bernstein, P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I 100 (1982), 5-171, Soc. Math. France, Luminy, 1981 Zbl0536.14011MR751966
  7. Jim Bryan, Tom Graber, The crepant resolution conjecture, Algebraic geometry—Seattle 2005. Part 1 80 (2009), 23-42, Amer. Math. Soc., Providence, RI Zbl1198.14053MR2483931
  8. Jim Bryan, Tom Graber, Rahul Pandharipande, The orbifold quantum cohomology of 2 / Z 3 and Hurwitz-Hodge integrals, J. Algebraic Geom. 17 (2008), 1-28 Zbl1129.14075MR2357679
  9. Weimin Chen, Yongbin Ruan, Orbifold Gromov–Witten theory, Orbifolds in mathematics and physics 310 (2002), 25-85, Amer. Math. Soc., Providence, RI, Madison, WI, 2001 Zbl1091.53058MR1950941
  10. Weimin Chen, Yongbin Ruan, A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004), 1-31 Zbl1063.53091MR2104605
  11. Tom Coates, Givental’s Lagrangian cone and S 1 -equivariant Gromov-Witten theory, Math. Res. Lett. 15 (2008), 15-31 Zbl1169.14037MR2367170
  12. Tom Coates, On the crepant resolution conjecture in the local case, Comm. Math. Phys. 287 (2009), 1071-1108 Zbl1200.53081MR2486673
  13. Tom Coates, Alexander Givental, Quantum Riemann-Roch, Lefschetz and Serre, Ann. of Math. (2) 165 (2007), 15-53 Zbl1189.14063MR2276766
  14. Tom Coates, Hiroshi Iritani, Hsian-Hua Tseng, Wall-crossings in toric Gromov-Witten theory. I. Crepant examples, Geom. Topol. 13 (2009), 2675-2744 Zbl1184.53086MR2529944
  15. Tom Coates, Yuan-Pin Lee, Alessio Corti, Hsian-Hua Tseng, The quantum orbifold cohomology of weighted projective spaces, Acta Math. 202 (2009), 139-193 Zbl1213.53106MR2506749
  16. David A. Cox, Sheldon Katz, Mirror symmetry and algebraic geometry, 68 (1999), American Mathematical Society, Providence, RI Zbl0951.14026MR1677117
  17. Boris Dubrovin, Geometry of 2 D topological field theories, Integrable systems and quantum groups 1620 (1996), 120-348, Springer, Berlin, Montecatini Terme, 1993 Zbl0841.58065MR1397274
  18. Carel Faber, Sergey Shadrin, Dimitri Zvonkine, Tautological relations and the r-spin Witten conjecture Zbl1203.53090MR2722511
  19. W. Fulton, R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry—Santa Cruz 1995 62 (1997), 45-96, Amer. Math. Soc., Providence, RI Zbl0898.14018MR1492534
  20. Alexander B. Givental, Homological geometry. I. Projective hypersurfaces, Selecta Math. (N.S.) 1 (1995), 325-345 Zbl0920.14028MR1354600
  21. Alexander B. Givental, Gromov-Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001), 551-568, 645 Zbl1008.53072MR1901075
  22. Alexander B. Givental, Symplectic geometry of Frobenius structures, Frobenius manifolds (2004), 91-112, Vieweg, Wiesbaden Zbl1075.53091MR2115767
  23. C. Hertling, Frobenius manifolds and moduli spaces for singularities, 151 (2002), Cambridge University Press Zbl1023.14018MR1924259
  24. C. Hertling, Yu. Manin, Weak Frobenius manifolds, Internat. Math. Res. Notices (1999), 277-286 Zbl0960.58003
  25. Seán Keel, Shigefumi Mori, Quotients by groupoids, Ann. of Math. (2) 145 (1997), 193-213 Zbl0881.14018MR1432041
  26. Y.-P. Lee, Invariance of tautological equations. I. Conjectures and applications, J. Eur. Math. Soc. (JEMS) 10 (2008), 399-413 Zbl1170.14021MR2390329
  27. Y.-P. Lee, Invariance of tautological equations. II. Gromov-Witten theory, J. Amer. Math. Soc. 22 (2009), 331-352 Zbl1206.14078MR2476776
  28. Yuri I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, 47 (1999), American Mathematical Society, Providence, RI Zbl0952.14032MR1702284
  29. Todor E. Milanov, The equivariant Gromov-Witten theory of P 1 and integrable hierarchies, Int. Math. Res. Not. IMRN (2008) Zbl1146.53067MR2439568
  30. JianZhong Pan, YongBin Ruan, XiaoQin Yin, Gerbes and twisted orbifold quantum cohomology, Sci. China Ser. A 51 (2008), 995-1016 Zbl1146.53069MR2410979
  31. Fabio Perroni, Chen-Ruan cohomology of A D E singularities, Internat. J. Math. 18 (2007), 1009-1059 Zbl1149.14010MR2360646
  32. Yongbin Ruan, The cohomology ring of crepant resolutions of orbifolds, Gromov-Witten theory of spin curves and orbifolds 403 (2006), 117-126, Amer. Math. Soc., Providence, RI Zbl1105.14078MR2234886
  33. Yongbin Ruan, (unpublished) 
  34. Hsian-Hua Tseng, Orbifold quantum Riemann-Roch, Lefschetz and Serre, Geom. Topol. 14 (2010), 1-81 Zbl1178.14058MR2578300
  35. Edward Witten, Quantum Background Independence In String Theory Zbl0643.53071

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.