Nakamaye’s theorem on log canonical pairs
Salvatore Cacciola[1]; Angelo Felice Lopez[1]
- [1] Dipartimento di Matematica e Fisica Università di Roma Tre Largo San Leonardo Murialdo 1 00146, Roma (Italy)
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 6, page 2283-2298
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCacciola, Salvatore, and Lopez, Angelo Felice. "Nakamaye’s theorem on log canonical pairs." Annales de l’institut Fourier 64.6 (2014): 2283-2298. <http://eudml.org/doc/275501>.
@article{Cacciola2014,
abstract = {We generalize Nakamaye’s description, via intersection theory, of the augmented base locus of a big and nef divisor on a normal pair with log-canonical singularities or, more generally, on a normal variety with non-lc locus of dimension $\le 1$. We also generalize Ein-Lazarsfeld-Mustaţă-Nakamaye-Popa’s description, in terms of valuations, of the subvarieties of the restricted base locus of a big divisor on a normal pair with klt singularities.},
affiliation = {Dipartimento di Matematica e Fisica Università di Roma Tre Largo San Leonardo Murialdo 1 00146, Roma (Italy); Dipartimento di Matematica e Fisica Università di Roma Tre Largo San Leonardo Murialdo 1 00146, Roma (Italy)},
author = {Cacciola, Salvatore, Lopez, Angelo Felice},
journal = {Annales de l’institut Fourier},
keywords = {Base loci; log-canonical singularities; non-lc ideal; base loci},
language = {eng},
number = {6},
pages = {2283-2298},
publisher = {Association des Annales de l’institut Fourier},
title = {Nakamaye’s theorem on log canonical pairs},
url = {http://eudml.org/doc/275501},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Cacciola, Salvatore
AU - Lopez, Angelo Felice
TI - Nakamaye’s theorem on log canonical pairs
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 6
SP - 2283
EP - 2298
AB - We generalize Nakamaye’s description, via intersection theory, of the augmented base locus of a big and nef divisor on a normal pair with log-canonical singularities or, more generally, on a normal variety with non-lc locus of dimension $\le 1$. We also generalize Ein-Lazarsfeld-Mustaţă-Nakamaye-Popa’s description, in terms of valuations, of the subvarieties of the restricted base locus of a big divisor on a normal pair with klt singularities.
LA - eng
KW - Base loci; log-canonical singularities; non-lc ideal; base loci
UR - http://eudml.org/doc/275501
ER -
References
top- F. Ambro, Quasi-log varieties, Tr. Mat. Inst. Steklova 240 (2003), 220-239 Zbl1081.14021MR1993751
- Caucher Birkar, Paolo Cascini, Christopher D. Hacon, James McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), 405-468 Zbl1210.14019MR2601039
- Sébastien Boucksom, Amaël Broustet, Gianluca Pacienza, Uniruledness of stable base loci of adjoint linear systems via Mori theory, Math. Z. 275 (2013), 499-507 Zbl1278.14021MR3101817
- Sébastien Boucksom, C. Favre, M. Jonnson, A refinement of Izumi’s theorem Zbl1312.13006
- S. Cacciola, L. di Biagio, Asymptotic base loci on singular varieties Zbl1282.14011MR3101802
- Paolo Cascini, James McKernan, Mircea Mustaţă, The augmented base locus in positive characteristic, Proc. Edinb. Math. Soc. (2) 57 (2014), 79-87 Zbl1290.14006MR3165013
- Lawrence Ein, Robert Lazarsfeld, Mircea Mustaţă, Michael Nakamaye, Mihnea Popa, Asymptotic invariants of base loci, Ann. Inst. Fourier (Grenoble) 56 (2006), 1701-1734 Zbl1127.14010MR2282673
- Lawrence Ein, Robert Lazarsfeld, Mircea Mustaţă, Michael Nakamaye, Mihnea Popa, Restricted volumes and base loci of linear series, Amer. J. Math. 131 (2009), 607-651 Zbl1179.14006MR2530849
- Tommaso de Fernex, Christopher D. Hacon, Singularities on normal varieties, Compos. Math. 145 (2009), 393-414 Zbl1179.14003MR2501423
- Osamu Fujino, Theory of non-lc ideal sheaves: basic properties, Kyoto J. Math. 50 (2010), 225-245 Zbl1200.14033MR2666656
- T. Fujita, A relative version of Kawamata-Viehweg vanishing theorem, (1985)
- Angela Gibney, Sean Keel, Ian Morrison, Towards the ample cone of , J. Amer. Math. Soc. 15 (2002), 273-294 Zbl0993.14009MR1887636
- Christopher D. Hacon, James McKernan, Boundedness of pluricanonical maps of varieties of general type, Invent. Math. 166 (2006), 1-25 Zbl1121.14011MR2242631
- Yujiro Kawamata, Katsumi Matsuda, Kenji Matsuki, Introduction to the minimal model problem, Algebraic geometry, Sendai, 1985 10 (1987), 283-360, North-Holland, Amsterdam Zbl0672.14006MR946243
- János Kollár, Shigefumi Mori, Birational geometry of algebraic varieties, 134 (1998), Cambridge University Press, Cambridge Zbl0926.14003
- Robert Lazarsfeld, Positivity in algebraic geometry. II, 49 (2004), Springer-Verlag, Berlin Zbl1093.14500MR2095472
- Brian Lehmann, On Eckl’s pseudo-effective reduction map, Trans. Amer. Math. Soc. 366 (2014), 1525-1549 Zbl06268334MR3145741
- J. Lesieutre, The diminished base locus is not always closed Zbl1317.14031MR3269465
- Mircea Mustaţă, The non-nef locus in positive characteristic, A celebration of algebraic geometry 18 (2013), 535-551, Amer. Math. Soc., Providence, RI Zbl1317.13011MR3114955
- Michael Nakamaye, Stable base loci of linear series, Math. Ann. 318 (2000), 837-847 Zbl1063.14008MR1802513
- Noboru Nakayama, Zariski-decomposition and abundance, 14 (2004), Mathematical Society of Japan, Tokyo Zbl1061.14018MR2104208
- Shigeharu Takayama, Pluricanonical systems on algebraic varieties of general type, Invent. Math. 165 (2006), 551-587 Zbl1108.14031MR2242627
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.