Nakamaye’s theorem on log canonical pairs

Salvatore Cacciola[1]; Angelo Felice Lopez[1]

  • [1] Dipartimento di Matematica e Fisica Università di Roma Tre Largo San Leonardo Murialdo 1 00146, Roma (Italy)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 6, page 2283-2298
  • ISSN: 0373-0956

Abstract

top
We generalize Nakamaye’s description, via intersection theory, of the augmented base locus of a big and nef divisor on a normal pair with log-canonical singularities or, more generally, on a normal variety with non-lc locus of dimension 1 . We also generalize Ein-Lazarsfeld-Mustaţă-Nakamaye-Popa’s description, in terms of valuations, of the subvarieties of the restricted base locus of a big divisor on a normal pair with klt singularities.

How to cite

top

Cacciola, Salvatore, and Lopez, Angelo Felice. "Nakamaye’s theorem on log canonical pairs." Annales de l’institut Fourier 64.6 (2014): 2283-2298. <http://eudml.org/doc/275501>.

@article{Cacciola2014,
abstract = {We generalize Nakamaye’s description, via intersection theory, of the augmented base locus of a big and nef divisor on a normal pair with log-canonical singularities or, more generally, on a normal variety with non-lc locus of dimension $\le 1$. We also generalize Ein-Lazarsfeld-Mustaţă-Nakamaye-Popa’s description, in terms of valuations, of the subvarieties of the restricted base locus of a big divisor on a normal pair with klt singularities.},
affiliation = {Dipartimento di Matematica e Fisica Università di Roma Tre Largo San Leonardo Murialdo 1 00146, Roma (Italy); Dipartimento di Matematica e Fisica Università di Roma Tre Largo San Leonardo Murialdo 1 00146, Roma (Italy)},
author = {Cacciola, Salvatore, Lopez, Angelo Felice},
journal = {Annales de l’institut Fourier},
keywords = {Base loci; log-canonical singularities; non-lc ideal; base loci},
language = {eng},
number = {6},
pages = {2283-2298},
publisher = {Association des Annales de l’institut Fourier},
title = {Nakamaye’s theorem on log canonical pairs},
url = {http://eudml.org/doc/275501},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Cacciola, Salvatore
AU - Lopez, Angelo Felice
TI - Nakamaye’s theorem on log canonical pairs
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 6
SP - 2283
EP - 2298
AB - We generalize Nakamaye’s description, via intersection theory, of the augmented base locus of a big and nef divisor on a normal pair with log-canonical singularities or, more generally, on a normal variety with non-lc locus of dimension $\le 1$. We also generalize Ein-Lazarsfeld-Mustaţă-Nakamaye-Popa’s description, in terms of valuations, of the subvarieties of the restricted base locus of a big divisor on a normal pair with klt singularities.
LA - eng
KW - Base loci; log-canonical singularities; non-lc ideal; base loci
UR - http://eudml.org/doc/275501
ER -

References

top
  1. F. Ambro, Quasi-log varieties, Tr. Mat. Inst. Steklova 240 (2003), 220-239 Zbl1081.14021MR1993751
  2. Caucher Birkar, Paolo Cascini, Christopher D. Hacon, James McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), 405-468 Zbl1210.14019MR2601039
  3. Sébastien Boucksom, Amaël Broustet, Gianluca Pacienza, Uniruledness of stable base loci of adjoint linear systems via Mori theory, Math. Z. 275 (2013), 499-507 Zbl1278.14021MR3101817
  4. Sébastien Boucksom, C. Favre, M. Jonnson, A refinement of Izumi’s theorem Zbl1312.13006
  5. S. Cacciola, L. di Biagio, Asymptotic base loci on singular varieties Zbl1282.14011MR3101802
  6. Paolo Cascini, James McKernan, Mircea Mustaţă, The augmented base locus in positive characteristic, Proc. Edinb. Math. Soc. (2) 57 (2014), 79-87 Zbl1290.14006MR3165013
  7. Lawrence Ein, Robert Lazarsfeld, Mircea Mustaţă, Michael Nakamaye, Mihnea Popa, Asymptotic invariants of base loci, Ann. Inst. Fourier (Grenoble) 56 (2006), 1701-1734 Zbl1127.14010MR2282673
  8. Lawrence Ein, Robert Lazarsfeld, Mircea Mustaţă, Michael Nakamaye, Mihnea Popa, Restricted volumes and base loci of linear series, Amer. J. Math. 131 (2009), 607-651 Zbl1179.14006MR2530849
  9. Tommaso de Fernex, Christopher D. Hacon, Singularities on normal varieties, Compos. Math. 145 (2009), 393-414 Zbl1179.14003MR2501423
  10. Osamu Fujino, Theory of non-lc ideal sheaves: basic properties, Kyoto J. Math. 50 (2010), 225-245 Zbl1200.14033MR2666656
  11. T. Fujita, A relative version of Kawamata-Viehweg vanishing theorem, (1985) 
  12. Angela Gibney, Sean Keel, Ian Morrison, Towards the ample cone of M ¯ g , n , J. Amer. Math. Soc. 15 (2002), 273-294 Zbl0993.14009MR1887636
  13. Christopher D. Hacon, James McKernan, Boundedness of pluricanonical maps of varieties of general type, Invent. Math. 166 (2006), 1-25 Zbl1121.14011MR2242631
  14. Yujiro Kawamata, Katsumi Matsuda, Kenji Matsuki, Introduction to the minimal model problem, Algebraic geometry, Sendai, 1985 10 (1987), 283-360, North-Holland, Amsterdam Zbl0672.14006MR946243
  15. János Kollár, Shigefumi Mori, Birational geometry of algebraic varieties, 134 (1998), Cambridge University Press, Cambridge Zbl0926.14003
  16. Robert Lazarsfeld, Positivity in algebraic geometry. II, 49 (2004), Springer-Verlag, Berlin Zbl1093.14500MR2095472
  17. Brian Lehmann, On Eckl’s pseudo-effective reduction map, Trans. Amer. Math. Soc. 366 (2014), 1525-1549 Zbl06268334MR3145741
  18. J. Lesieutre, The diminished base locus is not always closed Zbl1317.14031MR3269465
  19. Mircea Mustaţă, The non-nef locus in positive characteristic, A celebration of algebraic geometry 18 (2013), 535-551, Amer. Math. Soc., Providence, RI Zbl1317.13011MR3114955
  20. Michael Nakamaye, Stable base loci of linear series, Math. Ann. 318 (2000), 837-847 Zbl1063.14008MR1802513
  21. Noboru Nakayama, Zariski-decomposition and abundance, 14 (2004), Mathematical Society of Japan, Tokyo Zbl1061.14018MR2104208
  22. Shigeharu Takayama, Pluricanonical systems on algebraic varieties of general type, Invent. Math. 165 (2006), 551-587 Zbl1108.14031MR2242627

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.