On the persistence of decorrelation in the theory of wave turbulence
- [1] Université de Paris 13 Sorbonne Paris Cité F-93430 LAGA, UMR 7539 du CNRS, France
Journées Équations aux dérivées partielles (2013)
- Volume: 38, Issue: 1-3, page 1-15
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topde Suzzoni, Anne-Sophie. "On the persistence of decorrelation in the theory of wave turbulence." Journées Équations aux dérivées partielles 38.1-3 (2013): 1-15. <http://eudml.org/doc/275524>.
@article{deSuzzoni2013,
abstract = {We study the statistical properties of the solutions of the Kadomstev-Petviashvili equations (KP-I and KP-II) on the torus when the initial datum is a random variable. We give ourselves a random variable $u_0$ with values in the Sobolev space $H^s$ with $s$ big enough such that its Fourier coefficients are independent from each other. We assume that the laws of these Fourier coefficients are invariant under multiplication by $e^\{i\theta \}$ for all $\theta \in \mathbb\{R\}$. We investigate about the persistence of the decorrelation between the Fourier coefficients $(u_n(t))_n$ of the solutions of KP-I or KP-II with initial datum $u_0$ in the sense that we estimate the expectations $E(u_n \overline\{u_m\})$ in function of time and the size $\varepsilon $ of the initial datum. These estimates are sensitive to the presence or not of resonances in the three waves interaction, that is, denoting $\omega _k$ the dispersion relation, whether $\omega _k+\omega _l -\omega _\{k+l\}$ can be null (resonant model, KP-I) or not (non-resonant model, KP-II). In the case of a resonant equation, the expectations $E(u_n \overline\{u_m\})$ remain small up to times of order $o(\varepsilon ^\{-1\})$ whereas in the case of a non-resonant equation, they do up to times of order $o(\varepsilon ^\{-5/3\})$. The techniques used are different depending on the cases, we use Gronwall lemma and Gaussian large deviation estimates for the resonant case, and the normal form structure of KP-II in the other one.},
affiliation = {Université de Paris 13 Sorbonne Paris Cité F-93430 LAGA, UMR 7539 du CNRS, France},
author = {de Suzzoni, Anne-Sophie},
journal = {Journées Équations aux dérivées partielles},
keywords = {Wave turbulence; statistical equilibrium; random initial datum; invariant measures; nonlinear wave equation; Penrose transform},
language = {eng},
number = {1-3},
pages = {1-15},
publisher = {Groupement de recherche 2434 du CNRS},
title = {On the persistence of decorrelation in the theory of wave turbulence},
url = {http://eudml.org/doc/275524},
volume = {38},
year = {2013},
}
TY - JOUR
AU - de Suzzoni, Anne-Sophie
TI - On the persistence of decorrelation in the theory of wave turbulence
JO - Journées Équations aux dérivées partielles
PY - 2013
PB - Groupement de recherche 2434 du CNRS
VL - 38
IS - 1-3
SP - 1
EP - 15
AB - We study the statistical properties of the solutions of the Kadomstev-Petviashvili equations (KP-I and KP-II) on the torus when the initial datum is a random variable. We give ourselves a random variable $u_0$ with values in the Sobolev space $H^s$ with $s$ big enough such that its Fourier coefficients are independent from each other. We assume that the laws of these Fourier coefficients are invariant under multiplication by $e^{i\theta }$ for all $\theta \in \mathbb{R}$. We investigate about the persistence of the decorrelation between the Fourier coefficients $(u_n(t))_n$ of the solutions of KP-I or KP-II with initial datum $u_0$ in the sense that we estimate the expectations $E(u_n \overline{u_m})$ in function of time and the size $\varepsilon $ of the initial datum. These estimates are sensitive to the presence or not of resonances in the three waves interaction, that is, denoting $\omega _k$ the dispersion relation, whether $\omega _k+\omega _l -\omega _{k+l}$ can be null (resonant model, KP-I) or not (non-resonant model, KP-II). In the case of a resonant equation, the expectations $E(u_n \overline{u_m})$ remain small up to times of order $o(\varepsilon ^{-1})$ whereas in the case of a non-resonant equation, they do up to times of order $o(\varepsilon ^{-5/3})$. The techniques used are different depending on the cases, we use Gronwall lemma and Gaussian large deviation estimates for the resonant case, and the normal form structure of KP-II in the other one.
LA - eng
KW - Wave turbulence; statistical equilibrium; random initial datum; invariant measures; nonlinear wave equation; Penrose transform
UR - http://eudml.org/doc/275524
ER -
References
top- A.-S. de Suzzoni and N. Tzvetkov, On the propagation of weakly nonlinear random dispersive waves, Arch. Ration. Mech. Anal., 212, (2014), 849–874 Zbl1293.35287
- Anne-Sophie de Suzzoni, On the use of normal forms in the propagation of random waves, ArXiv e-prints (2013). Zbl1267.35130
- Jean-Marc Delort, Existence globale et comportement asymptotique pour l’équation de Klein-Gordon quasi linéaire à données petites en dimension 1, Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 1, 1–61. Zbl0990.35119MR1833089
- B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersive media, Sov. Phys. Dokl. 15 (1970), 539-541. Zbl0217.25004
- A. J. Majda, D. W. McLaughlin, and E. G. Tabak, A one-dimensional model for dispersive wave turbulence, J. Nonlinear Sci. 7 (1997), no. 1, 9–44. Zbl0882.76035MR1431687
- Jalal Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math. 38 (1985), no. 5, 685–696. Zbl0597.35101MR803256
- N. Tzvetkov, Long time bounds for the periodic KP-II equation, Int. Math. Res. Not. (2004), no. 46, 2485–2496. Zbl1073.35195MR2078309
- V.E. Zakharov and N.N. Filonenko, Weak turbulence of capillary waves, Journal of Applied Mechanics and Technical Physics 8 (1967), no. 5, 37–40.
- Vladimir Zakharov, Frédéric Dias, and Andrei Pushkarev, One-dimensional wave turbulence, Phys. Rep. 398 (2004), no. 1, 1–65. Zbl1003.76040MR2073490
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.