Quasilinear waves and trapping: Kerr-de Sitter space
Peter Hintz[1]; András Vasy[1]
- [1] Department of Mathematics Stanford University CA 94305-2125, USA
Journées Équations aux dérivées partielles (2014)
- Volume: 21, Issue: 6, page 1-15
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topHintz, Peter, and Vasy, András. "Quasilinear waves and trapping: Kerr-de Sitter space." Journées Équations aux dérivées partielles 21.6 (2014): 1-15. <http://eudml.org/doc/275534>.
@article{Hintz2014,
abstract = {In these notes, we will describe recent work on globally solving quasilinear wave equations in the presence of trapped rays, on Kerr-de Sitter space, and obtaining the asymptotic behavior of solutions. For the associated linear problem without trapping, one would consider a global, non-elliptic, Fredholm framework; in the presence of trapping the same framework is available for spaces of growing functions only. In order to solve the quasilinear problem we thus combine these frameworks with the normally hyperbolic trapping results of Dyatlov and a Nash-Moser iteration scheme.},
affiliation = {Department of Mathematics Stanford University CA 94305-2125, USA; Department of Mathematics Stanford University CA 94305-2125, USA},
author = {Hintz, Peter, Vasy, András},
journal = {Journées Équations aux dérivées partielles},
keywords = {semiclassical resolvent estimates; trapping; normal hyperbolicity; propagation of singularities; b-calculus},
language = {eng},
number = {6},
pages = {1-15},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Quasilinear waves and trapping: Kerr-de Sitter space},
url = {http://eudml.org/doc/275534},
volume = {21},
year = {2014},
}
TY - JOUR
AU - Hintz, Peter
AU - Vasy, András
TI - Quasilinear waves and trapping: Kerr-de Sitter space
JO - Journées Équations aux dérivées partielles
PY - 2014
PB - Groupement de recherche 2434 du CNRS
VL - 21
IS - 6
SP - 1
EP - 15
AB - In these notes, we will describe recent work on globally solving quasilinear wave equations in the presence of trapped rays, on Kerr-de Sitter space, and obtaining the asymptotic behavior of solutions. For the associated linear problem without trapping, one would consider a global, non-elliptic, Fredholm framework; in the presence of trapping the same framework is available for spaces of growing functions only. In order to solve the quasilinear problem we thus combine these frameworks with the normally hyperbolic trapping results of Dyatlov and a Nash-Moser iteration scheme.
LA - eng
KW - semiclassical resolvent estimates; trapping; normal hyperbolicity; propagation of singularities; b-calculus
UR - http://eudml.org/doc/275534
ER -
References
top- L. Andersson, P. Blue, Uniform energy bound and asymptotics for the Maxwell field on a slowly rotating Kerr black hole exterior, Preprint, arXiv:1310.2664 (2013) Zbl06575417
- A. Bachelot, Gravitational scattering of electromagnetic field by Schwarzschild black-hole, Ann. Inst. H. Poincaré Phys. Théor. 54 (1991), 261-320 Zbl0743.53037MR1122656
- A. Bachelot, Scattering of electromagnetic field by de Sitter-Schwarzschild black hole, Nonlinear hyperbolic equations and field theory (Lake Como, 1990) 253 (1992), 23-35, Longman Sci. Tech., Harlow Zbl0823.35162MR1175199
- A. Sá Barreto, M. Zworski, Distribution of resonances for spherical black holes, Math. Res. Lett. 4 (1997), 103-121 Zbl0883.35120MR1432814
- M. Beals, M. Reed, Microlocal regularity theorems for nonsmooth pseudodifferential operators and applications to nonlinear problems, Trans. Amer. Math. Soc. 285 (1984), 159-184 Zbl0562.35093MR748836
- P. Blue, A. Soffer, Phase space analysis on some black hole manifolds, J. Funct. Anal. 256 (2009), 1-90 Zbl1158.83007MR2475417
- J.-F. Bony, D. Häfner, Decay and non-decay of the local energy for the wave equation on the de Sitter-Schwarzschild metric, Comm. Math. Phys. 282 (2008), 697-719 Zbl1159.35007MR2426141
- B. Carter, Global structure of the Kerr family of gravitational fields, Phys. Rev. 174 (1968), 1559-1571 Zbl0167.56301
- B. Carter, Hamilton-Jacobi and Schrödinger separable solutions of Einstein’s equations, Comm. Math. Phys. 10 (1968), 280-310 Zbl0162.59302MR239841
- M. Dafermos, G. Holzegel, I. Rodnianski, A scattering theory construction of dynamical vacuum black holes, Preprint, arxiv:1306.5364 (2013)
- M. Dafermos, I. Rodnianski, A proof of Price’s law for the collapse of a self-gravitating scalar field, Invent. Math. 162 (2005), 381-457 Zbl1088.83008MR2199010
- M. Dafermos, I. Rodnianski, The wave equation on Schwarzschild-de Sitter space times, Preprint, arXiv:07092766 (2007)
- M. Dafermos, I. Rodnianski, The red-shift effect and radiation decay on black hole spacetimes, Comm. Pure Appl. Math 62 (2009), 859-919 Zbl1169.83008MR2527808
- M. Dafermos, I. Rodnianski, Decay of solutions of the wave equation on Kerr exterior space-times I-II: The cases of or axisymmetry, Preprint, arXiv:1010.5132 (2010) MR2730803
- M. Dafermos, I. Rodnianski, The black hole stability problem for linear scalar perturbations, Proceedings of the Twelfth Marcel Grossmann Meeting on General Relativity (2011), 132-189, World Scientific, Singapore
- M. Dafermos, I. Rodnianski, Lectures on black holes and linear waves, Evolution equations 17 (2013), 97-205, Amer. Math. Soc., Providence, RI Zbl1300.83004MR3098640
- M. Dafermos, I. Rodnianski, Y. Shlapentokh-Rothman, Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case , Preprint, arXiv:1402.7034 (2014) Zbl06589409
- R. Donninger, W. Schlag, A. Soffer, A proof of Price’s law on Schwarzschild black hole manifolds for all angular momenta, Adv. Math. 226 (2011), 484-540 Zbl1205.83041MR2735767
- S. Dyatlov, Exponential energy decay for Kerr–de Sitter black holes beyond event horizons, Math. Res. Lett. 18 (2011), 1023-1035 Zbl1253.83020MR2875874
- S. Dyatlov, Quasi-normal modes and exponential energy decay for the Kerr-de Sitter black hole, Comm. Math. Phys. 306 (2011), 119-163 Zbl1223.83029MR2819421
- S. Dyatlov, Asymptotics of linear waves and resonances with applications to black holes, Preprint, arXiv:1305.1723 (2013) Zbl1315.83022
- S. Dyatlov, Resonance projectors and asymptotics for -normally hyperbolic trapped sets, Preprint, arXiv:1301.5633 (2013) Zbl06394348
- S. Dyatlov, Spectral gaps for normally hyperbolic trapping, Preprint, arXiv:1403.6401 (2013)
- S. Dyatlov, M. Zworski, Trapping of waves and null geodesics for rotating black holes, Phys. Rev. D 88 (2013) Zbl1278.81100
- F. Finster, N. Kamran, J. Smoller, S.-T. Yau, Decay of solutions of the wave equation in the Kerr geometry, Comm. Math. Phys. 264 (2006), 465-503 Zbl1194.83015MR2215614
- F. Finster, N. Kamran, J. Smoller, S.-T. Yau, Linear waves in the Kerr geometry: a mathematical voyage to black hole physics, Bull. Amer. Math. Soc. (N.S.) 46 (2009), 635-659 Zbl1177.83082MR2525736
- P. Hintz, Global well-posedness of quasilinear wave equations on asymptotically de Sitter spaces, Preprint, arXiv:1311.6859 (2013)
- P. Hintz, A. Vasy, Non-trapping estimates near normally hyperbolic trapping, Preprint, arXiv:1306.4705 (2013) Zbl1321.58024
- P. Hintz, A. Vasy, Semilinear wave equations on asymptotically de Sitter, Kerr-de Sitter and Minkowski spacetimes, Preprint, arXiv:1306.4705 (2013) Zbl1336.35244
- P. Hintz, A. Vasy, Global analysis of quasilinear wave equations on asymptotically Kerr-de Sitter spaces, Preprint, arXiv:1404.1348 (2014) Zbl1336.35244
- L. Hörmander, On the existence and the regularity of solutions of linear pseudo-differential equations, Enseignement Math. (2) 17 (1971), 99-163 Zbl0224.35084MR331124
- L. Hörmander, The analysis of linear partial differential operators, vol. 1-4, (1983), Springer-Verlag Zbl0521.35002
- B. S. Kay, R. M. Wald, Linear stability of Schwarzschild under perturbations which are nonvanishing on the bifurcation -sphere, Classical Quantum Gravity 4 (1987), 893-898 Zbl0647.53065MR895907
- J. Luk, The null condition and global existence for nonlinear wave equations on slowly rotating Kerr spacetimes, J. Eur. Math. Soc. (JEMS) 15 (2013), 1629-1700 Zbl1280.35154MR3082240
- J. Marzuola, J. Metcalfe, D. Tataru, M. Tohaneanu, Strichartz estimates on Schwarzschild black hole backgrounds, Comm. Math. Phys. 293 (2010), 37-83 Zbl1202.35327MR2563798
- R. B. Melrose, Transformation of boundary problems, Acta Math. 147 (1981), 149-236 Zbl0492.58023MR639039
- R. B. Melrose, The Atiyah-Patodi-Singer index theorem, 4 (1993), A K Peters Ltd., Wellesley, MA Zbl0796.58050MR1348401
- R. B. Melrose, Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces, (1994), IkawaM.M. Zbl0837.35107MR1291640
- R. B. Melrose, A. Sá Barreto, A. Vasy, Asymptotics of solutions of the wave equation on de Sitter-Schwarzschild space, Comm. in PDEs 39 (2014), 512-529 Zbl1286.35145MR3169793
- S. Nonnenmacher, M. Zworski, Decay of correlations for normally hyperbolic trapping, Preprint, arXiv:1302.4483 (2013) Zbl06442708
- X. Saint Raymond, A simple Nash-Moser implicit function theorem, Enseign. Math. (2) 35 (1989), 217-226 Zbl0702.58011MR1039945
- D. Tataru, Local decay of waves on asymptotically flat stationary space-times, Amer. J. Math. 135 (2013), 361-401 Zbl1266.83033MR3038715
- D. Tataru, M. Tohaneanu, A local energy estimate on Kerr black hole backgrounds, Int. Math. Res. Not. IMRN (2011), 248-292 Zbl1209.83028MR2764864
- M. Tohaneanu, Strichartz estimates on Kerr black hole backgrounds, Trans. Amer. Math. Soc. 364 (2012), 689-702 Zbl1234.35275MR2846348
- A. Vasy, Microlocal analysis of asymptotically hyperbolic spaces and high energy resolvent estimates, 60 (2012), Cambridge University Press Zbl1316.58016MR3135765
- A. Vasy, Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces, Inventiones Math. 194 (2013), 381-513 Zbl1315.35015MR3117526
- R. M. Wald, Note on the stability of the Schwarzschild metric, J. Math. Phys. 20 (1979), 1056-1058 MR534342
- J. Wunsch, M. Zworski, Resolvent estimates for normally hyperbolic trapped sets, Ann. Henri Poincaré 12 (2011), 1349-1385 Zbl1228.81170MR2846671
- S. Yoshida, N. Uchikata, T. Futamase, Quasinormal modes of Kerr-de Sitter black holes, Phys. Rev. D 81 (2010) MR2659359
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.