Quasilinear waves and trapping: Kerr-de Sitter space

Peter Hintz[1]; András Vasy[1]

  • [1] Department of Mathematics Stanford University CA 94305-2125, USA

Journées Équations aux dérivées partielles (2014)

  • Volume: 21, Issue: 6, page 1-15
  • ISSN: 0752-0360

Abstract

top
In these notes, we will describe recent work on globally solving quasilinear wave equations in the presence of trapped rays, on Kerr-de Sitter space, and obtaining the asymptotic behavior of solutions. For the associated linear problem without trapping, one would consider a global, non-elliptic, Fredholm framework; in the presence of trapping the same framework is available for spaces of growing functions only. In order to solve the quasilinear problem we thus combine these frameworks with the normally hyperbolic trapping results of Dyatlov and a Nash-Moser iteration scheme.

How to cite

top

Hintz, Peter, and Vasy, András. "Quasilinear waves and trapping: Kerr-de Sitter space." Journées Équations aux dérivées partielles 21.6 (2014): 1-15. <http://eudml.org/doc/275534>.

@article{Hintz2014,
abstract = {In these notes, we will describe recent work on globally solving quasilinear wave equations in the presence of trapped rays, on Kerr-de Sitter space, and obtaining the asymptotic behavior of solutions. For the associated linear problem without trapping, one would consider a global, non-elliptic, Fredholm framework; in the presence of trapping the same framework is available for spaces of growing functions only. In order to solve the quasilinear problem we thus combine these frameworks with the normally hyperbolic trapping results of Dyatlov and a Nash-Moser iteration scheme.},
affiliation = {Department of Mathematics Stanford University CA 94305-2125, USA; Department of Mathematics Stanford University CA 94305-2125, USA},
author = {Hintz, Peter, Vasy, András},
journal = {Journées Équations aux dérivées partielles},
keywords = {semiclassical resolvent estimates; trapping; normal hyperbolicity; propagation of singularities; b-calculus},
language = {eng},
number = {6},
pages = {1-15},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Quasilinear waves and trapping: Kerr-de Sitter space},
url = {http://eudml.org/doc/275534},
volume = {21},
year = {2014},
}

TY - JOUR
AU - Hintz, Peter
AU - Vasy, András
TI - Quasilinear waves and trapping: Kerr-de Sitter space
JO - Journées Équations aux dérivées partielles
PY - 2014
PB - Groupement de recherche 2434 du CNRS
VL - 21
IS - 6
SP - 1
EP - 15
AB - In these notes, we will describe recent work on globally solving quasilinear wave equations in the presence of trapped rays, on Kerr-de Sitter space, and obtaining the asymptotic behavior of solutions. For the associated linear problem without trapping, one would consider a global, non-elliptic, Fredholm framework; in the presence of trapping the same framework is available for spaces of growing functions only. In order to solve the quasilinear problem we thus combine these frameworks with the normally hyperbolic trapping results of Dyatlov and a Nash-Moser iteration scheme.
LA - eng
KW - semiclassical resolvent estimates; trapping; normal hyperbolicity; propagation of singularities; b-calculus
UR - http://eudml.org/doc/275534
ER -

References

top
  1. L. Andersson, P. Blue, Uniform energy bound and asymptotics for the Maxwell field on a slowly rotating Kerr black hole exterior, Preprint, arXiv:1310.2664 (2013) Zbl06575417
  2. A. Bachelot, Gravitational scattering of electromagnetic field by Schwarzschild black-hole, Ann. Inst. H. Poincaré Phys. Théor. 54 (1991), 261-320 Zbl0743.53037MR1122656
  3. A. Bachelot, Scattering of electromagnetic field by de Sitter-Schwarzschild black hole, Nonlinear hyperbolic equations and field theory (Lake Como, 1990) 253 (1992), 23-35, Longman Sci. Tech., Harlow Zbl0823.35162MR1175199
  4. A. Sá Barreto, M. Zworski, Distribution of resonances for spherical black holes, Math. Res. Lett. 4 (1997), 103-121 Zbl0883.35120MR1432814
  5. M. Beals, M. Reed, Microlocal regularity theorems for nonsmooth pseudodifferential operators and applications to nonlinear problems, Trans. Amer. Math. Soc. 285 (1984), 159-184 Zbl0562.35093MR748836
  6. P. Blue, A. Soffer, Phase space analysis on some black hole manifolds, J. Funct. Anal. 256 (2009), 1-90 Zbl1158.83007MR2475417
  7. J.-F. Bony, D. Häfner, Decay and non-decay of the local energy for the wave equation on the de Sitter-Schwarzschild metric, Comm. Math. Phys. 282 (2008), 697-719 Zbl1159.35007MR2426141
  8. B. Carter, Global structure of the Kerr family of gravitational fields, Phys. Rev. 174 (1968), 1559-1571 Zbl0167.56301
  9. B. Carter, Hamilton-Jacobi and Schrödinger separable solutions of Einstein’s equations, Comm. Math. Phys. 10 (1968), 280-310 Zbl0162.59302MR239841
  10. M. Dafermos, G. Holzegel, I. Rodnianski, A scattering theory construction of dynamical vacuum black holes, Preprint, arxiv:1306.5364 (2013) 
  11. M. Dafermos, I. Rodnianski, A proof of Price’s law for the collapse of a self-gravitating scalar field, Invent. Math. 162 (2005), 381-457 Zbl1088.83008MR2199010
  12. M. Dafermos, I. Rodnianski, The wave equation on Schwarzschild-de Sitter space times, Preprint, arXiv:07092766 (2007) 
  13. M. Dafermos, I. Rodnianski, The red-shift effect and radiation decay on black hole spacetimes, Comm. Pure Appl. Math 62 (2009), 859-919 Zbl1169.83008MR2527808
  14. M. Dafermos, I. Rodnianski, Decay of solutions of the wave equation on Kerr exterior space-times I-II: The cases of | a | M or axisymmetry, Preprint, arXiv:1010.5132 (2010) MR2730803
  15. M. Dafermos, I. Rodnianski, The black hole stability problem for linear scalar perturbations, Proceedings of the Twelfth Marcel Grossmann Meeting on General Relativity (2011), 132-189, World Scientific, Singapore 
  16. M. Dafermos, I. Rodnianski, Lectures on black holes and linear waves, Evolution equations 17 (2013), 97-205, Amer. Math. Soc., Providence, RI Zbl1300.83004MR3098640
  17. M. Dafermos, I. Rodnianski, Y. Shlapentokh-Rothman, Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case | a | &lt; M , Preprint, arXiv:1402.7034 (2014) Zbl06589409
  18. R. Donninger, W. Schlag, A. Soffer, A proof of Price’s law on Schwarzschild black hole manifolds for all angular momenta, Adv. Math. 226 (2011), 484-540 Zbl1205.83041MR2735767
  19. S. Dyatlov, Exponential energy decay for Kerr–de Sitter black holes beyond event horizons, Math. Res. Lett. 18 (2011), 1023-1035 Zbl1253.83020MR2875874
  20. S. Dyatlov, Quasi-normal modes and exponential energy decay for the Kerr-de Sitter black hole, Comm. Math. Phys. 306 (2011), 119-163 Zbl1223.83029MR2819421
  21. S. Dyatlov, Asymptotics of linear waves and resonances with applications to black holes, Preprint, arXiv:1305.1723 (2013) Zbl1315.83022
  22. S. Dyatlov, Resonance projectors and asymptotics for r -normally hyperbolic trapped sets, Preprint, arXiv:1301.5633 (2013) Zbl06394348
  23. S. Dyatlov, Spectral gaps for normally hyperbolic trapping, Preprint, arXiv:1403.6401 (2013) 
  24. S. Dyatlov, M. Zworski, Trapping of waves and null geodesics for rotating black holes, Phys. Rev. D 88 (2013) Zbl1278.81100
  25. F. Finster, N. Kamran, J. Smoller, S.-T. Yau, Decay of solutions of the wave equation in the Kerr geometry, Comm. Math. Phys. 264 (2006), 465-503 Zbl1194.83015MR2215614
  26. F. Finster, N. Kamran, J. Smoller, S.-T. Yau, Linear waves in the Kerr geometry: a mathematical voyage to black hole physics, Bull. Amer. Math. Soc. (N.S.) 46 (2009), 635-659 Zbl1177.83082MR2525736
  27. P. Hintz, Global well-posedness of quasilinear wave equations on asymptotically de Sitter spaces, Preprint, arXiv:1311.6859 (2013) 
  28. P. Hintz, A. Vasy, Non-trapping estimates near normally hyperbolic trapping, Preprint, arXiv:1306.4705 (2013) Zbl1321.58024
  29. P. Hintz, A. Vasy, Semilinear wave equations on asymptotically de Sitter, Kerr-de Sitter and Minkowski spacetimes, Preprint, arXiv:1306.4705 (2013) Zbl1336.35244
  30. P. Hintz, A. Vasy, Global analysis of quasilinear wave equations on asymptotically Kerr-de Sitter spaces, Preprint, arXiv:1404.1348 (2014) Zbl1336.35244
  31. L. Hörmander, On the existence and the regularity of solutions of linear pseudo-differential equations, Enseignement Math. (2) 17 (1971), 99-163 Zbl0224.35084MR331124
  32. L. Hörmander, The analysis of linear partial differential operators, vol. 1-4, (1983), Springer-Verlag Zbl0521.35002
  33. B. S. Kay, R. M. Wald, Linear stability of Schwarzschild under perturbations which are nonvanishing on the bifurcation 2 -sphere, Classical Quantum Gravity 4 (1987), 893-898 Zbl0647.53065MR895907
  34. J. Luk, The null condition and global existence for nonlinear wave equations on slowly rotating Kerr spacetimes, J. Eur. Math. Soc. (JEMS) 15 (2013), 1629-1700 Zbl1280.35154MR3082240
  35. J. Marzuola, J. Metcalfe, D. Tataru, M. Tohaneanu, Strichartz estimates on Schwarzschild black hole backgrounds, Comm. Math. Phys. 293 (2010), 37-83 Zbl1202.35327MR2563798
  36. R. B. Melrose, Transformation of boundary problems, Acta Math. 147 (1981), 149-236 Zbl0492.58023MR639039
  37. R. B. Melrose, The Atiyah-Patodi-Singer index theorem, 4 (1993), A K Peters Ltd., Wellesley, MA Zbl0796.58050MR1348401
  38. R. B. Melrose, Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces, (1994), IkawaM.M. Zbl0837.35107MR1291640
  39. R. B. Melrose, A. Sá Barreto, A. Vasy, Asymptotics of solutions of the wave equation on de Sitter-Schwarzschild space, Comm. in PDEs 39 (2014), 512-529 Zbl1286.35145MR3169793
  40. S. Nonnenmacher, M. Zworski, Decay of correlations for normally hyperbolic trapping, Preprint, arXiv:1302.4483 (2013) Zbl06442708
  41. X. Saint Raymond, A simple Nash-Moser implicit function theorem, Enseign. Math. (2) 35 (1989), 217-226 Zbl0702.58011MR1039945
  42. D. Tataru, Local decay of waves on asymptotically flat stationary space-times, Amer. J. Math. 135 (2013), 361-401 Zbl1266.83033MR3038715
  43. D. Tataru, M. Tohaneanu, A local energy estimate on Kerr black hole backgrounds, Int. Math. Res. Not. IMRN (2011), 248-292 Zbl1209.83028MR2764864
  44. M. Tohaneanu, Strichartz estimates on Kerr black hole backgrounds, Trans. Amer. Math. Soc. 364 (2012), 689-702 Zbl1234.35275MR2846348
  45. A. Vasy, Microlocal analysis of asymptotically hyperbolic spaces and high energy resolvent estimates, 60 (2012), Cambridge University Press Zbl1316.58016MR3135765
  46. A. Vasy, Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces, Inventiones Math. 194 (2013), 381-513 Zbl1315.35015MR3117526
  47. R. M. Wald, Note on the stability of the Schwarzschild metric, J. Math. Phys. 20 (1979), 1056-1058 MR534342
  48. J. Wunsch, M. Zworski, Resolvent estimates for normally hyperbolic trapped sets, Ann. Henri Poincaré 12 (2011), 1349-1385 Zbl1228.81170MR2846671
  49. S. Yoshida, N. Uchikata, T. Futamase, Quasinormal modes of Kerr-de Sitter black holes, Phys. Rev. D 81 (2010) MR2659359

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.